西门子CP243-1工业以太网模块
境下应用而设计的工业计算机。它具有很强的抗干扰能力,广泛的适应能力和应用范围,这也是其区别于其他计算机控制系统的一个重要特征。这种工业计算机采用“面向用户的指令”,因此编程更方便。PLC能完成逻辑运算、顺序控制、定时、计数和算术运算等操作,具有数字量和模拟量输入/输出能力,并且非常容易与工业控制系统连成一个整体,易于“扩充”。由于PLC引入了微处理器及半导体存储器等新一代电子器件,并用规定的指令进行编程,因此PLC是通过软件方式来实现“可编程”的,程序修改灵活、方便。
1.1.1 PLC技术的产生
20世纪20年代,继电器控制系统开始盛行。继电器控制系统就是将继电器、定时器、接触器等元器件按照一定的逻辑关系连接起来而组成的控制系统。继电器控制系统结构简单、操作方便、价格低廉,在工业控制领域一直占据着主导地位。但是,继电器控制系统具有明显的缺点:体积大,噪声大,能耗大,动作响应慢,可靠性差,维护性差,功能单一,采用硬连线逻辑控制,设计安装调试周期长,通用性和灵活性差等。
1968年,美国通用汽车公司(GM)为了提高竞争力,更新汽车生产线,以便将生产方式从少品种大批量转变为多品种小批量,公开招标一种新型工业控制器。为尽可能减少更换继电器控制系统的硬件及连线,缩短重新设计、安装、调试周期,降低成本,GM提出了以下
字,CPU以二进制方式存储常数。常数也可以用十进制、十六进制ASCII码或浮点数的形式来表示。
16位整数(Integer,INT)是有符号数,*高位为符号位。*高位为0时为正数,为1时为负数,取值范围为−32 768~32 767。整数用补码来表示,正数的补码就是它的本身,将一个正数对应的二进制数的各位求反后加1,即可以得到**值与它相同的负数的补码。
(6)32位整数
32位整数(Double Integer,DINT)的*高位为符号位,取值范围为−2 147 483 648~2 147 483 647。
(7)32位浮点数
浮点数又称为实数(REAL),浮点数可以表示为1.m×2e,例如123.4可表示为1.234×102,符合ANSI/IEEE标准754_1985的基本格式。指数e=E+127(1≤e≤254),为8位整数。
ANSI/IEEE标准浮点数共占用一个双字(32位),*高位(第31位)为浮点数的符号位,*高位为0时是正数,为1时是负数;8位指数占23~30位;因为规定尾数的整数部分总是为1,所以只保留了尾数的小数部分m(0~22位)。浮点数的表示范围为+1.175 495×10−38~+3.402 823×1038(正数),−1.175 495×10−38~−3.402 823×1038(负数)。
浮点数的优点是可以用很小的存储空间(4B)表示非常大和非常小的数。PLC输入和输
二进制数的1位(bit)只能取0和1这两个不同的值,可以用来表示开关量(或称数字量)的两种不同的状态,例如触点的断开和接通、线圈的通电和断电等。如果该位为1,表示梯形图中对应的位编程元件
储器M和输出过程映像Q)的线圈“通电”,其常开触点接通,常闭触点断开,以后称该编程元件为1状态,或称该编程元件为ON状态(接通);如果该位为0,对应的编程元件的线圈和触点的状态与上述的相反,称该编程元件为0状态,或称该编程元件OFF(断开)。二进制常数用2#表示,例如2#1111_0110_100l_000l即是16位二进制常数。
2.十六进制数
十六进制的16个数字是0~9和A~F(对应于十进制数10~15),每个数字占二进制数的4位。B#16#、W#16#、DW#16#分别用来表示十六进制字节常数、十六进制字常数和十六进制双字常数,例如W#16#13AF。在数字后面加字母"H"也可以表示十六进制数,例如16#13AF可以表示为13AFH。
十六进制数的运算规则为逢16进l,例如B#16#3C=3×16+12=60。
3.BCD码
BCD码用4位二进制数表示一位十进制数,例如,十进制数9对应的二进制数为1001。4位二进