滤柱的工作方式为自然挂膜,废水水温具体为25~30℃。在培养生物膜的过程中,如果过滤的速度过快就会冲刷相对不成熟的生物膜,影响碳粒表面生物膜的形成,所以在挂膜的过程中,通常控制滤柱的过滤速度约为1.2m/h,空床停留当的时间具体为60min。待生物膜培养稳定后,运行时选择下向流运行方式,进水箱会设置计量泵,用于加压原水,将其压至滤柱顶部。滤柱在整个试验期内有两种工况形式:①控制滤柱过滤速度为1.6m/h,设置45min的空床停留时间;②控制滤柱的过滤速度为2.4m/h,设置30min的空床停留时间。
该方法运行的过程中,碳粒表面如果存在老化的生物膜,或滤层中集聚了一定的颗粒性物质,就会对水质和产水量产生影响,为了能进一步保障滤柱的正常运行,需要进行合理的反冲洗操作。该方法运行的过程中,必须凭借滤柱反冲洗的周期判断出水水质以及水头损失,滤柱的冲洗方式为单独水冲,周期具体为4~5d,具体时长为6~8min。
4.3 分析项目和方法
文章涉及试验水中存在的污染物质主要有:浊度、磷、铁、COD、锰、氨氮。浊度的测定需要凭借分光光度法,磷的测定凭借钼酸铵分光光度法,铁的测定凭借邻菲啰啉分光光度法,COD的测定凭借zhonggesuanjia法,锰的测定凭借高碘酸钾氧化-分光光度法。
5、结果与讨论
工业含酚、含醛废水是我国水污染控制中重点治理的有害废水,其中酚醛树脂废水是由酚类(如苯酚,甲酚,二甲酚和壬酚等)和醛类(甲醛,乙醛和糖醛等)在酸或碱的催化作用下合成的,其排放的废水含有高浓度的酚类,高浓度的醛类等有机物,其具有有机物浓度高,生物毒性大,pH值较低等特点。酚类化合物是原型质毒物,对一切生活个体都有毒害作用。因此,酚醛树脂废水的治理是非常有意义的。处理酚醛树脂废水的工艺方法比较多,主要有生化法、化学氧化法、气提法、吸附法、萃取法等,但这些方法能耗较高。近几年也出现了新的方法,如催化氧化法、液膜分离法、协同络合萃取法、磁化絮凝氧化法等。经研究表明,对于高浓度的酚醛树脂生产废水采用单一方法处理很难达到排放标准。综合考虑废水的处理成本和处理效果,本文采用碱解缩聚-催化氧化法-生物氧化法的组合工艺,对酚醛树脂废水处理进行探讨。本文采用碱解缩聚-臭氧催化氧化法预处理,碱解缩聚采用石灰为催化剂,经济实用,反应后可提高废水的可生化性。除醛脱酚后再进入到生化系统进行生物处理,取得了较好的处理效果,为实际工程设计提供依据。
1、实验部分
按照水中甲醛和挥发酚类的测定方法。采用乙酰丙酮光度法来测定水中甲醛的含量,4-氨基安替比林分光光度法来测定水中苯酚的含量。
2、实验及结果讨论
2.1 碱解缩聚除醛
取200mL废水于500mL烧杯中,在pH值为7的条件下,投加一定量的氢氧化钙试剂,将烧杯放在恒温水浴中在一定的恒温温度下,一定反应时间后分析废水中残留的甲醛含量。改变催化剂氢氧化钙的投加量、反应温度、反应时间等条件,进行甲醛降解。测定该废水在不同反应条件下残余的甲醛含量,并计算甲醛降解率。
(1)氢氧化钙投加量对除醛的影响
在有石灰存在的情况下,甲醛会聚合生成己糖,石灰在甲醛聚糖反应中起催化剂的作用。糖类对生物处理无毒害作用,提高废水的可生化性。在一定的反应温度和反应时间条件下,研究催化剂氢氧化钙投加量对该聚糖反应的影响,根据图1可以看出,当氢氧化钙投加量在300mg/L~2700mg/L时,随着氢氧化钙投加量的增加,甲醛的去除率提高。在氢氧化钙投加量为1500mg/L时,甲醛去除率达到99.84%;但是当氢氧化钙投加量为1500mg/L以后,氢氧化钙投加量的影响变小,曲线平缓。因此,综合考虑处理成本,处理效果,选择氢氧化钙投加量为1500mg/L较为合适。
1.1 主要试剂和仪器
4-氨基安替比林,铁qinghuajia,氯化铵,氨水,过氧化氢,固体氢氧化钙,乙酰丙酮,乙酸铵,氢氧化钠,磷酸均为分析纯。
数显恒温振荡器SHA-C,紫外分光光度计UV-2450,臭氧发生器。
1.2 废水水质
实验用废水是江苏南通某酚醛树脂生产工艺废水,其主要有机物污染物是苯酚,甲醛,水质见表1。
5.1 挂膜期运行效果分析
设判断生物活性炭生物膜是否已成熟的标准就是其有机物的氨氮去除率和有机物去除率。该试验进行时处于夏季,夏季的高温对生物膜的成熟更有利。在挂膜开始前10d,因为活性炭具有较好的吸附作用,滤柱可更好地去除氨氮以及COD;到了挂膜后期,因为活性炭已吸附了大量的污染物质,活性炭对氨氮以及COD的吸附左右有所下降,随着碳粒生物膜日渐成熟,生物对污染物的降解作用反而加强。到21d时,滤柱对氨氮以及COD和氨氮的去除速率更为稳定,证明挂膜成功。
5.2 对铁和锰的去除效果
如果处于工况1的运行情况下,进水铁浓度为0.599mg/L;出水铁浓度范围处于0~0.17mg/L之间,出水铁的平均浓度为0.13mg/L,经计算发现,铁的去除效率已达到78%,出水铁的浓度不会受到进水水质的明显影响,经过处理后能达到回用水质的相关参数要求。如果处于工况2的运行情况下,进水铁平均浓度为0.67mg/L;出水铁的浓度范围具体为0.10~0.37mg/L,出水铁的平均质量浓度具体为0.22mg/L,去除效率达到66%,通过和有关参数对比发现,出水铁的浓度超标。出水铁招标的情况受进水铁浓度和停留时间有紧密的关系,如果进水铁浓度>1mg/L,就会严重影响出水铁的浓度,完成处理后的水也不能达到回用的标准。
如果处于工况1的运行情况下,进水锰的浓度范围为0.08~0.79mg/L,锰的平均质量浓度为0.42mg/L;出水锰的质量浓度范围处于0~0.07mg/L之间,平均锰浓度为0.05mg/L,去除效率达到86%。如果处于工况2的运行情况下,进水锰的浓度范围处于0.20~2.01mg/L,平均锰浓度具体为0.97mg/L;出水锰质量浓度范围为0.06~0.2mg/L,锰平均质量浓度为0.24mg/L,去除效率为74%。如果处于工况2的运行情况下,出水锰就会出现较为严重的超标,不能达到污水回用的相关参数要求,这和停留时间以及锰浓度的变化有着较为紧密的联系。
5.3 对浊度的去除效果
如图2所示为生物活性炭过滤去除废水的蚀度,进水具有幅度较为的浊度变化。如果处于工况1的运行情况下,进水浊度具体约为17.1NTU,经过相关处理,出水浊度已达到1.7NTU,去除的效率已达到90%。如果处于工况1的运行情况下,进水浊度具体为17.3NTU,经过相关处理,出水浊度已达到3.9NTU,去除效率达到78%,因为停留时间不长,滤层中水流出时容易带出小颗粒,造成出水浊度升高,稳定后,也不能达到回水水质的相关要求