UPS的标称容量是表示其视在功率,实际上UPS的负载通常为非线性负载,它随负载功率因素的变化而变化,如果UPS的输出特性不好,输出电压会产生跌落,电压稳定度降低,影响负载安全工作。所以在为UPS确定容量大小时应考虑UPS带非线性负载的能力,即根据UPS所提供的额定功率及功率因数来确定实际带负载能力,避免UPS因为负载过重,而工作不正常或损坏UPS的逆变器。也就是说额定输出功率为1KVA的UPS并不一定能驱动1KVA的负载。施耐德UPS电源系统投入使用时,应注意详细检查系统主机的各项参数设置。特别是一些在主机控制面板上无法设置而又需要厂商技术人员用加密的内部调测软件进行的参数设置。为了延长UPS的使用寿命,UPS不宜长期处于满负荷状态下运行。后备式施耐德UPS一般选取额定功率的60%~70%的负载量,在线式施耐德UPS一般选取额定功率的70%~80%的负载量,同时UPS也不宜长期处于过度轻载状态下运行。电池供电时间主要受负载大小、电池容量、环境温度、电池放电截止电压等因素影响,一般计算UPS电池供电时间的公式为T=V*AH*N*P.F/W。其中T是蓄电池组供电时间,V是蓄电池电压,AH蓄电池是定格容量,P.F是UPS的输出功率因素,W是负载功率。例如我院CT配备的UPS的蓄电池电压为12V,定格容量为100AH,蓄电数量为64块,功率因为为0.7,负载功率为40KW,那么,它的供电时间则为T=12*100*64*0.7/40000=1.344h约为80min,即停电后可维持供电时间约为80min。
UPS电源是许多行业负载的动力保证,维持供电的连续性和供电系统的安全性,UPS时刻发挥着重要的安全保障作用,蓄电池是UPS的重要组成部分,蓄电池作为动力提供的最后保障,无疑是UPS中的最后一道保险,其质量的好坏直接关系到UPS是否能够正常工作。根据调查统计,施耐德UPS无法正常供电所引发的事故分析发现,其中有50%以上事故是由于蓄电池故障引发的,蓄电池是UPS电源事故发生率居高不下的一个环节,由此可见提高蓄电池运行安全可靠的必要性和迫切性。
工频UPS电源输出的电源质量存在的优越性工频UPS电源独有的输入输出变压器。使电流隔离免受输入*的同时,也将提高电源输出的质量。在像石化领域一类的恶劣工业环境中,输出电源质量的优劣,将直接影响整个工厂设备、人员的安全性及生产能力。
商务型的UPS电源并不具备上述组件,所以也不具备如此强大的功能。工频施耐德UPS电源过载切换存在的优越性强大的过载能力工频UPS电源设计有强大的过载能力。当设备过载时,由于其具有的过载能力强,所以UPS电源切换至旁路运行的可能性很小。这将大大增加系统的安全性。因为当切换至旁路运行时,同则意味着负载不再由逆变器或蓄电池供电。
高频UPS电源的过载能力相对工频UPS电源较低,当发生意外过载时,容易由UPS电源切换至旁路运行,施耐德这将会把系统置于一个极不稳定的状态,增加了旁路开关因瞬时过载而跳闸的可能性,影响了系统的安全性。
工频UPS电源,用数字信号处理技术确保测量数据快速、灵活,从而产生快速的控制变量,确保对充电器及逆变的实时控制。
工频UPS电源比高频UPS电源具有更强大的短路保护能力及更强大的过载能力。由于中国市电环境的极不稳定和易受到一些外部情况的*,所以对短路能力及过载能力的要求也更高。采用工频UPS电源,将极大地提高负载设备的安全性与稳定性。工频施耐德UPS