华能 水内冷发电机绝缘测试仪 发电机绝缘电阻测试仪 使用方法 ITECH款双极性电源IT64215年上市后,即得到广泛好评。作为一款双极性电源/电池模拟器,IT64特有的双极性电压/电流输出,可用作双极电源或双极电子负载,广泛应用在便携式电池供电产品、移动电源、LEIC半导体、物联网等测试领域。一转眼4年过去,一起来盘点IT64经典应用案例。1电池测试——锂电池充放电循环测试锂离子电池的充电过程为先恒流充电,到接近终止电压时改为恒压充电,且要保证终止电压精度在1%之内。
HN380B水内冷发电机绝缘电阻测试仪
HN380B水内冷绝缘电阻测试仪于试验室或现场做绝缘测试试验。内含高精度微电流测量系统、数字升压系统。只需要用一条高压线和
一条信号线连接试品即可测量。测量自动进行,结果由大屏幕液晶显示,并将结果进行存储。
一、主要特点
1.采用32位微控制器控制,全中文操作界面,操作方便。
2.输出电流大,(2500V下输出大于25mA),短路电流≧25mA。
3.高压发生模块采用全封闭技术,内部有保护电阻,安全可靠。
4.抗干扰能力强,能满足超高压变电站现场操作。
5.测试完毕自动放电,并实时监控放电过程。
6.适于测量水内冷发电机的绝缘电阻、吸收比(R60S/R15S)和极化指数(R10min/R1min)。
7.测试高压为2500V。
8.自动对水极化电势进行补偿调节。机座与汇水管间的电阻小至10kΩ也可保证测量准确度。
9.输出功率大,线路对汇水管间的负载电阻可低至100kΩ(2500V)绝缘电阻测量可低至1MΩ(2500V)。
10.绝缘电阻值用模拟进度条指示,能直观无延时的观察容性试品的测试过程。对数刻度,示值跳动小,读数方便。
11.数字显示采用3
1/2
LCD数字表。
12.LCD计时器显示测试时间,并以0~32分钟周而复始循环显示其分、秒。每隔15秒蜂鸣响一次。
13.可自动测量和记忆R15S、R60S、R10min、吸收比和极化指数,供测试完成时复核、读取。
14.具备自动对水极化电势进行补偿调节功能。
二、主要技术性能
准确度:±(5%+5字)
测量范围:0.1M~200GΩ
显示方式:数字和模拟进度条双显。
温度测量:-25℃~125℃
试验电压范围:2.5KV
短路电流:≧25mA
测量时间:1分钟~10分钟(与测量方式有关)
充电电源:180~270VAC ,50Hz/60Hz±1%
(市电或发电机供电)
工作环境:温度-10~40℃,相对湿度20~80%。
三、操作部件功能
1.L接线端
:“L”为高压输出端,称为线路端,由高压电缆引至被测线端,例如接至电机绕组、电缆线芯。
2.G接线端
:“G”称为端,用于三电极法测量绝缘材料或电缆的体积电阻,它接至三电极的保护环端。
3.E接线端
:“E”称为地端,接至被测物的地、零端。例如电机外壳金属、变压器铁芯、电缆层。
4、注意事项及其它 请注意安全,L为高压端!E为地端,必须接大地!
四、仪器功能选择
按 (功能选择键)循环选择
绝缘电阻测试,查看存储数据,调整日期时间。
九、影响电阻或电阻率测试的主要因素
a.环境温湿度:
一般材料的电阻值随环境温湿度的升高而减小。相对而言,表面电阻(率)对环境湿度比较敏感,而体电阻(率)则对温度较为敏感。湿度增加,表面泄漏增大,
体电导电流也会增加。温度升高,载流子的运动速率加快,介质材料的吸收电流和电导电流会相应增加,据有关资料报道,
一般介质在70C时的电阻值仅有20C时的10%。因此,测量材料的电阻时,必须指明试样与环境达到平衡的温湿度
b.测试电压(电场强度):
介质材料的电阻(率)值一般不能在很宽的电压范围内保持不变,即欧姆定律对此并不适用。常温条件下,在较低的电压范围内,
电导电流随外加电压的增加而线性增加,材料的电阻值保持不变。超过一定电压后,由于离子化运动加剧,电导电流的增加远比测试电压增加的快
,材料呈现的电阻值迅速降低。由此可见,外加测试电压越高,材料的电阻值越低,以致在不同电压下测试得到的材料电阻值可能有较大的差别。
值得注意的是,导致材料电阻值变化的决定因素是测试时的电场强度,而不是测试电压。对相同的测试电压,若测试电极之间的距离不同,对材料电阻
率的测试结果也将不同,正负电极之间的距离越小,测试值也越小。
几乎所有液相色谱接头故障都是可以避免的,按下列要求可以有效地预防接头的故障。不同厂家生产的接头和刃环不可混用不同厂家连接管伸出刃环的长度不完全相同,混用容易导致漏液、螺纹损坏、色谱柱进出口及检测器进液口螺母破坏等,连接管在螺母中没有良好密封也会导致漏液、死体积增加等。建议不要互换使用不同厂家生产的接头和刃环。按要求组装和拧紧接头,不可拧得过紧低压接头的故障主要有接头松动、管头损坏、螺纹“滑丝”、拧过头。强度调制信号的相干接收技术凭借其线宽容忍度高、成本低的优点已经得到了广泛的研究和应用,尤其在短距离传输中,其中信号的恢复通常通过包络检测的方法来实现。但是这种信号在传输的过程中存在很强的光载波,因而大大降低了光功率效率,带来光纤非线性效应。武汉光电实验室光电子器件与集成功能实验室李蔚教授,联合武汉邮电科学研究院光纤通信技术与网络重点实验室的胡荣博士,提出了一种新型的基于数字载波再生的偏振复用离散多载波(DMT)信号无衰减传输技术,并通过实验检验了124Gb/s偏振复用DMT信号无衰减传输100公里的性能。