煤化工主要指通过对煤的化学加工将其转变成液态、气态以及固态等多种化工产品的生产过程。煤化工能够极大地提高煤的利用效率,使能源能够物尽其用,在资源日渐短缺的时候,提高能源利用效率显得至关重要。煤化工在我国的能源战略中占据重要地位,但在煤化工工艺流程中所产生的工艺废水,无疑是煤化工产业发展的一大障碍,大量工艺废水的产生不仅对环境产生巨大的影响,同时也阻碍着企业的发展。实现对煤化工废水的减量达标排放是企业亟需应对和解决的问题。
1、煤化工废水的来源与特点
煤化工主要指通过对煤的化学加工将其转变成液态、气态以及固态等多种化工产品的生产过程。具体来说,就是煤炭经过焦化、气化、电石乙炔化、液化以及化工产品的回收利用等一系列的化学生产过程。根据煤化工的生产流程,煤化工废水主要为液化废水、气化废水及焦化废水。煤炭液化分为直接液化和间接液化两种,直接液化产生的废水特征污染物主要为硫化物和氨氮。间接液化产生的废水特征污染物是酮、酸、醇等小分子有机物;煤炭气化则是指在高温条件下,煤气发生炉中煤气裂解而产生的各类气体,在气化过程中产生的水蒸气以及煤气净化洗涤废水。气化废水一般含有氨氮、酚类、油类等有机污染物;焦化废水则是煤炭焦化过程及煤气初冷所产生的废水。焦化废水特征污染物是氰化物、酚化物,是一种有毒难以降解处理的废水。
煤化工废水不仅废水量较大,而且成分较为复杂,包含氰化物、酚类物质及硫化物、氨氮等三百多种化学污染物质,各类污染物的浓度水平也较高,色度也较高,是一种比较有处理难度的工业废水。因为煤化工废水中成复杂,含有剧毒成分氰化物,因而易于使得微生物容易中毒,活性污泥易失活,导致生物处理单元失灵,影响污水处理效率和效果;煤化工废水含有大量氨氮,如果不能够达标处理排放,则易于造成水体富营养化,使得藻类植物大量泛滥,引起水华等;煤化工废水中含有大量难以生物降解的大分子有机物,生化处理难度相对较大。
2、预处理技术
高浓度的酚类、油类会给后续生化处理带来一定的压力,因此为保障后续的生化处理系统能够稳定地运行。因此,在生物处理前段应该进行脱酚、除油的预处理。
2.1 脱酚技术
高浓度的酚类会给后续生化处理带来一定的压力,因此为保障后续生化处理的稳定进行,预处理阶段应将氨氮和酚类的浓度降低到微生物可以接受的浓度。根据酚类在水中和溶剂中的分配系数的不同,采用萃取法去除酚类。酚类在溶剂中的溶解度较大而能够转移到溶剂中去,实现酚类和水的分离。萃取法的处理效率极高,经过萃取处理后的煤化工废水酚类浓度下降至10%左右,约为400mg/L以下,极大地减小了后续生物处理系统的压力。
2.2 除油技术
油类能够隔绝空气,影响煤化工废水中的溶解氧浓度,对后续的生物好氧处理将会产生一定的影响的,可能会阻碍煤化工废水的可生化性。因此,在生物处理前段应该进行除油预处理。油类在废水中的存在状态分为浮油、乳化油、溶解油三类。浮油浮于水面,易于去除。乳化油粒径较小,呈乳化状态存在于水中,因而难以直接去除。溶解油为溶解于水中的废油,为难分离处理的油,但该类油类的量较少。煤化工废水的除油处理一般采用气浮法。气浮法是利用微小气泡作为载体,将油滴微粒粘附于其上,使得其密度大于水而上浮于水面上,通过机械刮离水面。该类油类分离处理方法技术比较成熟,大量应用于废水除油处理中。
3、二级处理-生物技术
高分子有机物的厌氧降解指的是:无氧气条件下,在微生物作用下,复杂的大分子有机物在微生物胞外酶的作用下分解为小分子的可溶性有机物,可溶性小分子有机物再在发酵细菌作用下将水解产物降解脂肪酸、乳酸、醇类等小分子代谢产物。经过厌氧降解后的煤化工废水中的COD得以下降。另一方面,经硝化细菌的作用,能够将氨氮转化为硝酸盐,降低氨氮的浓度。厌氧生物降解为后续的好氧生物处理准备了有利的条件。经过厌氧处理后的煤化工废水再进行好氧生物处理。一般采用活性污泥法,通过微生物自身的生命活动,将废水中有机物降解为二氧化碳、水、氨气等或者转化为自身生长所需新物质,从而使废水中有机物得以去除。煤化工废水成分复杂,并且为有毒废水,因此,菌种的筛选及驯养至关重要。只有培养出能够适应煤化工废水的微生物才能够保证煤化工废水处理站的稳定运行。
近年来,我国电子、机械、汽车等行业发展迅速,大量的镀件需求带动了电镀产业的迅猛发展。我国大约2万多家电镀企业,每年排放大量的污染物,包括约4亿t含重金属的废水、5万t固体废物、3000亿m3酸性废气。为解决电镀工业的重污染问题,我国环保政策日趋严厉,很多电镀企业希望通过新建或改建的方式增加处理设施,达到废水“零排放”,专注产品生产,以期实现经济、环保、社会效益的统一。
文章从废水“零排放”的理念出发,从处理技术、工程应用、存在的问题3方面总结介绍,并提出实现废水“零排放”的建议,以期为相关从业者提供参考。
1、电镀废水“零排放”的概念
“零排放”即无排放,不向环境中排放任何污染物质,实现对资源的循环回用,其早来源于1972年美国提出争取在1985年实现电镀废水“零排放”的计划,1978年美国电镀协会第40号计划中提出漂洗工艺“闭路循环工序化”就是具体落实“零排放”的。在实际生产过程中,物质会不可避免的进入到环境中,因此,理论上废水“零排放”是无法实现的,是一种理想化的污染治理目标,文中所讲的“零排放”,是一种近“零排放”。
2、电镀废水的处理技术
电镀废水按照其生产过程可分为前处理废水、镀件清洗废水、后处理废水以及废液。按照我国电镀废水处理规范,电镀废水通常要分流收集、处理后再进行综合处理,所采用的处理技术目前主要有以下几种。
(1)化学法:目前全球有近80%的电镀废水采用化学法进行处理,主要工艺有酸碱中和、化学沉淀、氧化还原等,化学法简单、可靠,但产生污泥量大,若能实现准确投药,严格管理,也可实现废水的选择性回用。
(2)生物法:生物处理技术包括生物化学法、生物絮凝法、生物吸附法、植物修复法等,常用于去除有机物、氮磷、悬浮物等污染物质。由于电镀废水中重金属离子和某些有机化合物会抑制或扼杀微生物,目前尚无稳定有效的微生物菌种直接处理电镀废水,通常需经过物理、化学法等预处理后再进入生物处理系统。
(3)膜处理法:膜分离技术用于回收废水中的重金属和盐类,削减废水排放量,提高废水的回用率。不过,该技术产生的浓水仍需进一步处理,目前,相当数量的企业采用的处理方式为委外处置或蒸发浓缩等。
(4)离子交换法:离子交换技术已经成为有效处理电镀废水并且回收某些高价值金属的重要手段,也是电镀废水实现闭路循环的重要组成环节。离子交换法在处理低浓度金属废水时,在处理效果和运行成本上较化学法更有优势。
(5)电渗析技术:在直流电场的作用下,离子透过选择性离子交换膜而迁移,从而使电解质离子自溶液中部分分离出来的过程称为电渗析,常用于工业用初级纯水的制备、工业残液中有用成分的回收等。
(6)电吸附技术:电吸附是利用带电电极表面吸附水中离子及带电粒子,使水中溶解的盐类和其他带电物质在电极表面富集浓缩而实现水的净化和盐的去除,与电渗析技术相比,其对进水水质要求较低,具有产水量高、除盐程度适中、操作维护简便以及能耗低、稳定性好等特点。
(7)蒸馏浓缩法:蒸发技术的实质就是水蒸气的形成过程,根据所用能源、设备、流程不同可分为多效蒸发、多级闪急蒸发、蒸气压缩蒸发(MVR)等。蒸馏浓缩工艺通常用于膜处理后的浓液处置,通过将浓液中的水分蒸发,溶液中重金属及盐类终结晶,再将蒸发结晶物销售或交由第三方安全处置。
除此以外,电絮凝、电解、EDI(电去离子)技术等也被用于电镀废水的处理。实际工程中通常会采用多种技术联合处理的工艺,做到电镀废水分阶段处理、