新闻
庞加莱大学毕业证外壳定制
2023-12-19 08:41  浏览:21
庞加莱大学毕业证外壳定制

庞加莱大学庞加莱大学
亨利·庞加莱 [1]  (Jules Henri Poincaré,1854年4月29日—1912年7月17日),法国数学家、天体力学家、数学物理学家、科学哲学家,生于法国南锡,卒于巴黎。庞加莱的研究涉及数论、代数学、几何学、拓扑学、天体力学、数学物理、多复变函数论、科学哲学等许多领域。
他被公认是19世纪后四分之一和二十世纪初的lingxiu数学家,是对于数学和它的应用具有全面知识的最后一个人。庞加莱在数学方面的杰出工作对20世纪和当今的数学造成极其深远的影响,他在天体力学方面的研究是牛顿之后的一座里程碑,他因为对电子理论的研究被公认为相对论的理论先驱。是“批判学派”代表人物之一。 [21854年4月29日,亨利·庞加莱出生于法国南锡一个学者家庭中。庞加莱家族在法国拥有极高声望,庞加莱的父母亲都出身于法国的显赫世家,几代人都居住在法国东部的洛林。他的祖父曾在拿破仑政权下的圣康坦部队医院供职,1817年在鲁昂定居,先后生下两个儿子,大儿子莱昂·庞加莱即为庞加莱的父亲。庞加莱的父亲和姐夫都是南锡大学医学院的教授。他的母亲是一位善良、才华出众、很有教养的女性,一生的心血全部倾注到教育和照料孩子身上。庞加莱的两个堂兄弟是法国政界的zhuming人物:雷蒙·庞加莱是法兰西学院院士,并于1913-1920年间任法国总统;吕西·庞加莱曾任法国民众教育与美术部长,负责中等教育工作。
因为视力极差,所以庞加莱在音乐和体育课上表现一般,除此之外,庞加莱在各方面都称得上是成绩优异。庞加莱的数学才华在上大学之前已经显现出来。他的数学教师形容他是一只“数学怪兽”,这只怪兽席卷了包括法国高中学科竞赛第一名在内的几乎所有荣誉。
童年生活
庞加莱的签名
庞加莱的签名
庞加莱的童年主要接受母亲的教育。他的超常智力使他成为早熟的儿童,不仅接受知识极为迅速,而且口才也很流利。但不幸的事发生了:五岁时患了一场白喉病、九个月后喉头坏了,致使他的思想不能顺利用口头表达出来,并成为一位体弱多病的人。尽管如此,庞加莱还是乐意玩耍游戏,喜欢跳舞。当然,剧烈的运动他是无法进行的。
才华初展
庞加莱特别爱好读书,读书的速度快得惊人,而且能对读过的内容迅速、准确、持久地记住。他甚至能讲出书中某件事是在第几页第几行中讲述的。庞加莱还对博物学发生过特殊的兴趣,《大洪水前的地球》一书据说给他留下了终身不忘的印象。他对博物学的兴趣也很浓,历史、地理的成绩也很优异。他在儿童时代还显露了文学才华,有的作文被老师誉为“杰作”。
求学生涯
1873年
1873年
1862年庞加莱进入南锡中学读书。初进校时虽然他的各科学习成绩十分优异,但并没有对数学产生特殊的兴趣。对数学的特殊兴趣大约开始于15岁,并很快就显露了非凡才能。从此,他习惯于一边散步,一边在脑中解数学难题。这种习惯一直保持终身。
1870年7月19日爆发的普法战争使得庞加莱不得不中断学业。法国战败了,法国的许多城乡被德军洗劫一空并被德军占领。为了了解时局,他很快学会了德文。他亲眼看到的德军的暴行,成了一个炽热的爱国者。
恢复学业
庞加莱
庞加莱
1871年,庞加莱继续学业。
1872年庞加莱两次荣获法国公立中学生数学竞赛头等奖,从而于1873年被高等工科学校作第一名录取。据说,在南锡中学读书时,他的老师就誉称他为“数学巨人”。高等工科学校为了测试他的数学才能还特意设计了一套“漂亮的问题”,一方面要考出他的数学天才;另一方面也为了避免40年前伽罗瓦的教训重演。
1873年,庞加莱进入巴黎综合理工大学(école Polytechnique),在那里他得以从事他擅长的数学,师从zhuming数学家查尔斯·厄米特,并发表了他第一篇学术论文。后来庞加莱继续跟随厄米特攻读博士学位。
大学研究
1879年
1879年
1875年前后,庞加莱从理工大学毕业,进入南锡矿业大学继续学习数学和采矿。毕业后,他加入了法国矿业集团(CorpsdesMines)成为法国东北部矿产区的一名巡视员,与此同时,庞加莱继续在厄米特的指导下从事研究。在他一生的大部分时间里,庞加莱都不曾放弃他的工程事业,他在1881至1885年间负责北方铁路的建设工作,数年后成为法国矿业集团的总工程师,最后在总监的位置上退休。
1875年~1878年,庞加莱在高等工科学校毕业后,又在国立高等矿业学校学习工程,准备当一名工程师。但他却缺少这方面的勇气,且与他的兴趣不符。
1879年8月1日,庞加莱撰写了关于微分方程方面的博士论文,获得了巴黎大学博士学位。然后到卡昂大学理学院任讲师。
1881年任巴黎大学教授,直到去世。先后讲授数学分析、光学、电学、流体平衡、电学中的数学、天文学、热力学等课程。这样,庞加莱一生的科学事业就和巴黎大学紧紧地联在一起了。
1911年第一次索尔维会议上与居里夫人
1911年第一次索尔维会议上与居里夫人
1887年庞加莱当选为法国科学院院士。1887年入选法国科学院,后任院长,并于1906年被选为法兰西学院院士,这是法国学者的最高荣誉。
1899年因研究天体力学中的三体问题获奥斯卡二世(OscarⅡ)奖金。
1906年庞加莱当选为法国科学院院长.
1908年以作家身份(散文家)成为法兰西学院院士。
1908年庞加莱因前列腺增大而未能前往罗马,虽经意大利外科医生作了手术,使他能继续如前一样精力充沛地工作,但好景不长。
不幸辞世
1912年春天,庞加莱再次病倒了,7月9日作了第二次手术;7月17日在穿衣服时,突然因血栓梗塞,在巴黎逝世,终年仅58岁。庞加莱是20世纪科学革命和哲学革命的先驱,“批判学派”代表人物之一。 [2]
主要成就编辑 播报
庞加莱的研究涉及数论、代数学、几何学、拓扑学等许多领域,最重要的工作是在函数论方面。他早期的主要工作是创立自守函数理论(1878年)。他引进了富克斯群和克莱因群,构造了更一般的基本域。他利用后来以他的名字命名的级数构造了自守函数,并发现这种函数作为代数函数的单值化函数的效用。
1883年,庞加莱提出了一般的单值化定理(1907年,他和克贝相互独立地给出完全的证明)。同年,他进而研究一般解析函数论,研究了整函数的亏格及其与泰勒展开的系数或函数juedui值的增长率之间的关系,它同皮卡定理构成后来的整函数及亚纯函数理论发展的基础。他又是多复变函数论的先驱者之一。
庞加莱为了研究行星轨道和卫星轨道的稳定性问题,在1881~1886年发表的四篇关于微分方程所确定的积分曲线的论文中,创立了微分方程的定性理论。他研究了微分方程的解在四种类型的奇点(焦点、鞍点、结点、中心)附近的性态。他提出根据解对极限环(他求出的一种特殊的封闭曲线)的关系,可以判定解的稳定性。
1885年,瑞典国王奥斯卡二世设立“n体问题”奖,引起庞加莱研究天体力学问题的兴趣。他以关于当三体中的两个的质量比另一个小得多时的三体问题的周期解的论文获奖,还证明了这种限制性三体问题的周期解的数目同连续统的势一样大。
这以后,他又进行了大量天体力学研究,引进了渐进展开的方法,得出严格的天体力学计算技术。
庞加莱这一工作给N体问题的解决以及动力系统的研究带来巨大而无比深刻的影响:
第一,庞加莱证明了对于N体问题在N大于二时,不存在统一的第一积分(uniform first integral)。也就是说即使是一般的三体问题,也不可能通过发现各种不变量最终降低问题的自由度, 把问题化简成更简单可以解出来的问题,这打破了当时很多人希望找到三体问题一般的显式解的幻想。在一百年后学习微分方程课的人大多在第二个星期就从老师那里知道绝大多数微分方程是没法找到定量的解的,但一般都能从定性理论中了解更多解的性质,甚至可以通过计算机“看到”解的形状行为。而在庞加莱的年代,大多数数学家更热衷于用代数或幂函数方法找到解,使用定性方法和几何方法来讨论微分方程就是起源于庞加莱对于N体问题的研究,这彻底改变人们研究微分方程的基本想法。
第二,为了研究N体问题,庞加莱发明了许多全新的数学工具。例如他完整地提出了不变积分(invariant integrals) 的概念,并且使用它证明了zhuming的回归定理(recurrence theorem)。另一个例子是他为了研究周期解的行为,引进了第一回归映象(first return map)的概念,在后来的动力系统理论中被称为庞加莱映象。还有象特征指数(characteristic expontents),解对参数的连续依赖性(continuous dependence of solutions with respect to parameters)等等。所有这些都成为了现代微分方程和动力系统理论中的基本概念。
庞加莱
庞加莱
第三,庞加莱通过研究所谓的渐近解(asymptotic solutions),同宿轨道 (homoclinic orbits) 和异宿轨道(hetroclinic orbits),发现即使在简单的三体问题中,在这样的同宿轨道或者异宿轨道附近,方程的解的状况会非常复杂,以至于对于给定的初始条件,几乎是没有办法预测当时间趋于无穷时,这个轨道的最终命运。事实上,半个世纪后,后来的数学家们发现这种现象在一般动力系统中是常见的,他们把它叫做稳定流形(stable manifold)和不稳定流形(unstable manifold)正态相交(intersects transversally)所引起的同宿纠缠(homoclinic tangle),而这种对于轨道的长时间行为的不确定性,数学家和物理学家称之为混沌(chaos)。庞加莱的发现可以说是混沌理论的开创者。
庞加莱还开创了动力系统理论。1895年,他证明了“庞加莱回归定理”。他在天体力学方面的另一重要结果是,在引力作用下,转动流体的形状除了已知的旋转椭球体、不等轴椭球体和环状体外,还有三种庞加莱梨形体存在。
庞加莱对数学物理和偏微分方程也有贡献。他用括去法(sweepingout)证明了狄利克雷问题解的存在性,这一方法后来促使位势论有新发展。他还研究拉普拉斯算子的特征值问题,给出了特征值和特征函数存在性的严格证明。他在积分方程中引进复参数方法,促进了弗雷德霍姆理论的发展。

相关新闻
联系方式
公司:龙港市潮圣制袋厂
姓名:潮圣(先生)
地区:浙江-温州
地址:龙港市典字东路209号一层
QQ:79691638
微信:79691638
拨打电话
微信咨询
请卖家联系我