电销机器人期货一、语音识别概述语音识别技术醉早可以追溯到20世纪50年代,是试图使机器能“听懂”人类语音的技术。按照目前主流的研究方法,连续语音识别和孤立词语音识别采用的声学模型一般不同。孤立词语音识别一般采用DTW动态时间规整算法。连续语音识别一般采用
HMM模型或者HMM与人工神经网络ANN相结合。语音的能量来源于正常呼气时肺部呼出的稳定气流,喉部的声带既是阀门,又是振动部件。语音信号可以看作是一个时间序列,可以由隐马尔可夫模型(HMM)进行表征。语音信号经过数字化及滤噪处理之后,进行端点检测得到语音段。
对语音段数据进行特征提取,语音信号就被转换成为了一个向量序列,作为观察值。在训练过程中,观察值用于估计HMM的参数。这些参数包括观察值的概率密度函数,及其对应的状态,状态转移概率等。当参数估计完成后,估计出的参数即用于识别。此时经过特征提取后的观察值作为测试数据进行识别,由此进行识别准确率的结果统计。训练及识别的结构框图如图1所示。图1语音识别系统结构框图