江西赛恒实业有限公司
“只有合适的,才是好的”,赛恒实业不仅向您提供优质的产品,还可根据您的实际需求,无偿调配产品并提供持续的技术支持。
第一部分:混凝土工程
楼板厚度——主次梁相交部位偏厚,工艺自身缺陷。
问题描述:
次梁钢筋布置在主梁钢筋上部,当满足主梁上部钢筋保护层厚度,即为主梁保护层面层为楼面基准标高时,则次梁上部保护层厚度将高于楼面基准标高,那么次梁相邻板面也将高于粘结理论一直是工程界很关注的一个问题。钢筋和混凝土这两种材料之所以能很好的共同工作,其最重要的原因是钢筋和混凝土之间有很好的粘结作用。吸附理论和机械咬合理论是在植筋中运用的主要粘结理论:机械咬合理论:机械咬合作用指当胶凝材料浆体渗透到基体混凝土的孔隙中,当浆体硬化后锚固砂浆和基体混凝上互相交错咬合而形成一定的粘结强度。混凝土和砌体在成型过程中会存在大量的孔隙,如浇注时留下的大孔、水泥水化留下的气孔、干缩形成的微裂缝以及大量的毛细孔和胶凝孔,为机械咬合作用形成提供了良好条件,因此机械咬合力占粘结强度比例较大,是界面粘结强度的主要组成部分。钢筋的表面形状也会对在粘结受力过程中所发生的物理现象有很大影响,如光圆钢筋和变形钢筋。楼面基准标高。
解决技巧:
与设计单位沟通,如500mm高的主梁,通常保证上下各25mm保护层厚度,钢筋笼高度为450mm,此时设计如同意调整钢筋笼为425,上部保护层调整为50mm,则一般情况下可解决以上问题。
提醒:此方法必须与设计院沟通确认后方可执行。
楼板厚度——模板支撑体系。
问题描述:
材料规格差。
模板支撑立杆无法调节或顶托调节过高。
其他问题不做细说。
解决技巧:
建议采用50*100mm标准规格木方,木方不得扭曲变形。
立杆顶部应增设可调节的支撑,调节高度不宜高于300mm。
板底木方间距不大于300mm。
立杆间距不大于1200mm。
扫地杆离地间距不大于200mm。
中间水平拉杆步距不大于1800mm。
楼板厚度——施工控制差,导致楼面平整度差,而出现板厚度不均。
问题描述:
混凝土表面收光处理差,找平施工较随意。
解决技巧:
单人操作应采用2米铝合金刮杠赶平。
多人操作可采用更长的刮杠赶平。
混凝土施工往往在夜间施工,应确保充足的照明。
楼板厚度——现场施工管理差,缺乏管控措施。
<酸性水环境作用下混凝土防腐施工技术与工程应用。针对依托工程的桥梁桩基的腐蚀类别、腐蚀等级,研究了桥梁桩基混凝土结构的耐久性设计及防腐施工的技术要求,为桩基工程配制了高矿物掺合料掺量、高抗氯离子渗透性的c40高性能混凝土,并开展了酸性水;环境下的混凝土现场暴露试验。/p>
问题描述:
负弯矩钢筋多为一级钢,强度较低,踩踏易变形。变形后,混凝土难以盖住钢筋时,为不露筋,局部加厚。
传统的钢筋马凳不易固定,负筋仍然容易踩踏变形,且钢筋马凳外露于板面会产生锈点。
楼板厚度控制方面无有效措施。
解决技巧:
方式一:PVC支撑,间距500*500;成品支撑施工简便,未起到板厚控制作用。
解决技巧:
方式二:钢筋吊凳,间距600*600,应满足人行步距要求,以便于施工人员行走。有利于板厚的控制,且可重复利用。
解决技巧:
方式三:成品细石混凝土预制支墩,利于板厚控制。
为研究植筋构件的延性和抗震性能,设计制作了两组六个钢筋混凝土压弯构件,一组为整体浇注的构件,一组为植筋构件。通过试验,对比分析了两组构件在反复周期荷载作用下的滞回曲线饱满程度、骨架曲线、极限承载力、极限变形能力及延性,并进行了理论分析。对比分析表明:在植筋深度满足20d的情况下,植筋钢筋混凝土压弯构件在反复周期荷载作用下,钢筋屈服后,仍具有较好的变形能力和延性。当塑性铰区的钢筋压屈,混凝土压碎脱落时,植筋锚固钢筋锚固在节点中的部分与混凝土之间没有滑移。在反复周期荷载作用下植筋锚固构件和整浇构件的开裂荷载、屈服荷载、极限荷载、屈服位移、极限位移、位移延性比等主要指标基本相同,无明显的变对于角区位置的钢筋,钢筋的保护层基本上已经脱落,有些钢筋在局部还留有小段的保护层。通过对锈蚀率数据的分析,留有小段保护层处的钢筋锈蚀率小于保护层己脱落区段,这主要是由于保护层脱落的钢筋直接暴露于大气中,加速了钢筋的锈蚀。边角区残留保护层裂缝宽度与钢筋锈蚀率的关系。图中每一个点代表试验中某一裂缝宽度下所采集到的所有钢筋锈蚀率的平均值。化。植筋构件和整浇构件的滞回曲线与骨架曲线也基本一致,说明植筋钢筋混凝土构件具有良好的变形能力和延性。 解决技巧:
方式四:自制木盒控制板厚。
其他楼板厚度控制技巧
传统的有:柱筋标注500等高线,楼面找平时拉线控制。
楼板厚度施工过程控制和检查采取插签方式,安排专人跟踪检查。
通常做法是在钢筋棒上以红油漆画出500标高线,采用尺量的方式。这种方式在夜间施工时操作不便,如图所示钢筋棒检查较为便利。
厨卫间预埋木盒高度与楼板厚度一致,可有效控制楼板厚度。
厨卫间降板采用角钢。高低差为50mm时,采用L50角钢,固定角钢时控制上边缘与室内标高平齐,则厨卫间与下边缘平齐,作为标高控制点,可有效控制楼板厚度。
混凝土垂直度——模板支撑体系缺陷。
问题描述:
涨模、接缝不平,导致垂直度、平整度差;
剪力墙整体倾斜,导致垂直度差。
根部涨模、漏浆严重,导致底部平整垂直度差。
上下层剪力墙错台。
解决技巧:
剪力墙采用水泥预制内支撑,间距不大于600mm,绑扎固定。有地区公司采用钢筋支撑,容易产生锈点,用量较大时锈点过多,抹灰也会因为锈点而空鼓开裂。
解决技巧:
层高3米以内剪力墙应至少设置5排对拉螺杆,最下排螺杆距地不得大于200mm,最上一排距上部板底不宜大于400mm。
解决技巧:
剪力墙应增设斜撑,楼板上应提前预埋钢筋头。
斜撑至少一道,间距不大于2500m设计理论法:基于桥梁设计规范,根据实测材料性能,结构几何尺寸、支撑条件、外观缺陷和通行荷载,按照桥梁结构的设计计算理论来评定桥梁承载能力。这种方法的应用较为广泛。等荷载判别法:在同一跨径或(荷载长度)用同一种影响线分别计算出超重车和标准车的等代荷载,将两者进行比较。适用与超限紧急运输时的过桥判断。荷载试验法:分为静载试和动载试验方法,是目前比较普遍采用的评定桥梁承载能力的方法,直观可靠,但试验规模较大,试验费用高,较难普及。由于此次评定是对金刚头桥在被实施了预应力碳纤维板加固和增加了新型材料一碳纤维板后的承载能力的评定,不同于以往对普通钢筋混凝土桥梁的承载能力的评定,以往的经验性方法已不再适用。且由于金刚头桥初始的设计资料不全导致设计理论法也无法施用,所以为了更实际、更准确和更综合地考虑加固后金刚头桥的受力性能,选用了荷载试验法对金刚头桥的承载。m。
解决技巧:
模板垂直度应在混凝土结构施工前验收、校准。
解决技巧:
柱脚、剪力墙底部漏浆解决方案:墙、柱模板下口可先用模板条沿边缘固定,离墙、柱边预留20mm的间隙用于模板插入。
解决技巧:
剪力墙层间错台控制技巧:
浇捣混凝土时在剪力墙或柱头下200mm位置埋设螺栓,上层支模时,该螺栓作为固定模板的支点,避免柱根部错台。