机器人控制系统是机器人的大脑,是决定机器人功能和性能的主要因素。工业机器人控制技术的主要任务就是控制工业机器人在工作空间中的运动位置、姿态、轨迹、操作顺序及动作的时间等,具有编程简单、软件菜单操作、友好的人机交互界面、在线操作提示和使用方便等特点。目前机器人的应用工程由单台机器人工作站向机器人生产线发展,机器人控制器的联网技术使得对机器人生产线的监控、诊断和管理更加便捷。
速度快、深度大、变形小。能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。
机器人焊接目前已广泛应用在汽车制造业,汽车底盘、座椅骨架、导轨、消声器以及液力变矩器等焊接。丰田公司将点焊作为标准来装备其日本国内和海外的所有点焊机器人。用这种技术可以提高焊接质量,甚至试图用它来代替某些弧焊作业,同时,在短距离内的运动时间也大为缩短。该公司推出一种高度低的点焊机器人,用它来焊接车体下部零件。这种矮小的点焊机器人还可以与较高的机器人组装在一起,共同对车体上部进行加工,从而缩短了整个焊接生产线长度。轿车后桥、副车架、摇臂、悬架、减振器等底盘零件大都是以惰性气体保护焊(Metal-Inert Gas Welding,MIG)为主的受力安全零件,主要构件采用冲压焊接,板厚平均为1.5~4 mm,焊接主要以搭接、角接接头形式为主,焊接质量要求相当高,其质量的好坏直接影响到轿车的安全性能。应用机器人焊接后,大大提高了焊接件的外观和内在质量,并保证了质量的稳定性和降低劳动强度,改善了劳动环境。
激光焊接设备的关键是大功率激光器,主要有两大类,一类是固体激光器,又称Nd:YAG激光器。Nd:YAG激光器波长为1.06 mm,主要优点是产生的光束可以通过光纤传送,因此可以省去复杂的光束传送系统,适用于柔性制造系统或远程加工,通常用于焊接精度要求比较高的工件。汽车工业常用输出功率为3~4 kW的Nd:YAG激光器。另一类是气体激光器,又称CO2激光器,分子气体作工作介质,产生平均为10.6 mm的红外激光,可以连续工作并输出很高的功率,标准激光功率在2~5 kW之间。汽车工业中激光技术主要用于车身拼焊、焊接和零件焊接。
德国的Rofin-Sina公司和Trumpf公司主要生产CO2激光器,HAAS公司则主要生产固体(Nd:YAG)激光器,而IPG公司生产新型的光纤激光器,Laserline公司生产半导体激光器,形成相互竞争又互相补充的激光技术研发与生产链。大众汽车、宝马汽车、奔驰汽车和美雅(Meyer)船厂是德国应用激光焊接技术的示范企业。德国的大众汽车已经将激光焊接技术引入中国,并在上海大众和一汽-大众的轿车批量生产线上应用,推动了中国激光焊接技术的应用。
使用输出功率大于4 kW的二极管激发的固体激光器,对于铝合金的焊接具有决定性的意义。这些系统的光束质量特别好,能够瞬间注入直径为0.4 mm的光纤中。激光束的聚焦能力极大地依靠于光纤的截面积。这表明这种新一代的固体激光器的潜力是“点”直径更小,功率密度更高,使人们能够进行以连续波的模式进行焊接。例如,用于对小型样品和小零件的各种连接,如对接、T形焊接和搭接进行了研究,零件的材料是AlMgSi0.7(厚度:3 mm)和AlMg3(厚度:1.6 mm)铝合金。高质量的焊道外形只有在纯粹的连续波状态才有可能。当使用千瓦级的二极管激发的Nd:YAG
激光器焊接铝时,在很宽的参数范围内都能获得很高的可靠性。
激光技术竞争的结果是强化了其在汽车制造工业中的应用。DaimlerChrysler公司焊接(设备和零部件)技术课题组的负责人ChristianElsner先生认为:激光焊接***主要的应用领域是汽车传动系统和汽车车架的焊接制造。激光焊接长期以来并没有被充分利用,新的激光焊接电源和更高的功率使得激光焊接挤进了长期以来一直被传统焊接技术所占据的“领地”。
激光技术在汽车工业中之所以得到了极为广泛的应用,与研究所的科技工作者们的劳动是分不开的。DaimlerChrysler公司生产技术与材料技术研究所打算在将来进一步加强与物理研究所的密切合作,使焊接生产过程中的传感器技术能有更好的结果。工业控制系统生产企业、工业控制系统应用企业与科学研究机构之间的合作越紧密,合作的结果就越富有成效。
目前,一些研究机构和工业企业正在研制开发新的激光焊接方案。新型晶体管脉冲的沙本激光器(DiodengepumpteScheibenlaser)就是一个这样的范例。斯图加特激光工具研究所(IFSW)的指出:新的沙本激光技术是一个全新的晶体管固体激光技术方案,它有着很高的激光效率和很好的激光聚焦性能。
产生激光的介质是一个极薄的反射片,其厚度在百分之几到二百分之几微米之间。脉冲激光射束经紧凑的折射镜系统多次折射,***后经晶体射出。尽管反射片厚度尺寸很小,但是其反射能力极高,总效率也很高。Hügel先生认为:这种激光技术集CO2激光技术与Nd:YAG固体激光技术的优点于一身,在将来可以开辟更多新的应用领域。
激光焊接的使用量在不断增长,德国VW公司的Touran轿车就是一个很好的例证。在这一新型轿车中,激光焊点的数量达到了1400个、焊缝的总长度达70m。在舒适、美观的敞蓬轿车的生产中,VW公司的技术人员与奥地利的焊接专家Fronius公司合作研制开发了一种激光混合焊接技术。在敞蓬轿车的车门上,激光混合焊接焊缝的长度达到了3570mm,是纯激光焊接焊缝长度的3倍。
VW公司的材料专家认为:与纯激光焊接技术相比,利用激光混合焊接技术可大大提高板金件缝隙的连接能力。从而使得VW公司可以更加充分地利用激光高速焊接时电弧焊接的工艺稳定性。另一个应用实例是BMW 5系列的宝马轿车的铝合金隔板采用这种激光混合焊接技术与内高压变形加工的铝合金支架焊接在一起。
与各种单独使用的激光焊接技术相比,激光混合焊接技术具有显著的优点。对于激光混合,优点主要体现在:更大的熔深/较大缝隙的焊接能力;焊缝的韧性更好,通过添加辅助材料可对焊缝晶格组织施加影响;无烧穿时焊缝背面下垂的现象;适用范围更广;借助于激光替换技术投资较少。对于激光MIG惰性气体保护焊混合,优点主要体现在:较高的焊接速度;熔焊深度大;产生的焊接热少;焊缝的强度高;焊缝宽度小;焊缝凸出小。从而使得整个系统的生产过程稳定性好,设备可用性好;焊缝准备工作量和焊接后焊缝处理工作量小;焊接生产工时短、费用低、生产效率高;具有很好的光学设备配置性能。
但是,激光混合焊接在电源设备方面的投资成本相对较高。随着市场的进一步扩大,电源设备的价格也将会有所下降,并将使激光混合焊接技术在更多的领域中得到应用。至少激光混合焊接技术在铝合金、已经慢慢代替传统焊接了。