UV 测试,可以再现阳光、雨水和露水所产生的破坏。
设备通过将待测材料曝晒放在经过控制的阳光和湿气的交互循环中,同时提高温度的方式来进行试验。
试验设备采 用紫外线荧光灯模拟阳光,同时还可以通过冷凝或喷淋的方式模拟湿气影响,用来评估材料在颜色变化、光泽、裂纹、起泡、催化、氧化等方面的变化。
老化检测是可靠性检测的一部分,是模拟产品在现实使用条件中涉及到的各种因素对产品产生老化的情况进行相应条件加强实验的过程。
检测范围:
UV测试中用到的每个灯管类型都在紫外线发射总能量和波长光谱上有所不同,荧光紫外线灯管通常分为UVA和UVB灯,这取决于它们主要输出的区域范围。
UVA-340模拟阳光中的紫外线部分,主要用于户外产品的光老化试验;UVA-351模拟穿过窗玻璃的阳光的紫外线部分,主要用于室内产品的光老化试验;UVB-313EL广泛应用于耐久性材料的快速、节省的测试,会加速材料的老化,有时会导致异常结果。
在使用时必须征得客户的同意。
检测范围:主要用于汽车、涂料、油漆、印刷包装、颜料、纺织物、屋顶材料、橡胶、塑料、涂层等。
橡胶
国标/吨16585,硫化橡胶人工气候老化(荧光紫外灯)试验方法
纺织品
AATCC测试方法186,耐候性:紫外线和水分曝光
ACFFA为乙烯涂层聚酯织物色牢度的试验方法
塑料
组织4892塑料 - 暴露于实验室光源的零件3种方法:荧光紫外灯
符合DIN 53 384 人工气候老化和暴露在人造光
美国ASTM的D - 4329,轻/塑料水暴露标准规程
美国ANSI,A14.5规范加速风化的便携式加固塑料梯子
美国ASTM的D - 6662,塑料板材地板地材板的标准规范
规范的ANSI C57.12.28加速风化组合式设备的外壳完整性
国标/吨18950,橡胶和塑料软管静态下耐紫外线性能测定
国标/吨16422.3,塑料实验室光源暴露试验方法第3部分:荧光紫外灯
美国ASTM的D - 4674,加速试验的试验方法暴露于室内塑料颜色稳定性
美国ASTM的D - 1248,聚乙烯塑料挤出材料的标准规范的电线和电缆
涂料
美国ASTM的D - 3794,卷材涂料的测试标准指南
美国ASTM的D - 4587,轻/油漆水暴露标准规程
英国标准BS 2782:第5部分,方法540B(暴露于实验室光源的方法)
印刷油墨
美国ASTM F1945,喷墨打印耐光性暴露在室内荧光灯照明
屋顶材料
美国ASTM的D - 4799,试验沥青屋顶材料的加速风化方法
美国ASTM的D - 4434,用于PVC板材屋面的标准规范
美国ASTM的D - 5019,为增强非硫化聚合物膜在屋面用板的标准规范
粘合剂/密封剂
美国ASTM C- 1184,规格为结构有机硅密封胶
美国ASTM的D -904,为胶粘剂样品暴露于人造光的标准规程
美国ASTM C- 1442,为开展有关人工老化测试使用密封装置的标准规程
美国ASTM的D -5215,为乙烯地板染色仪器评定的标准试验方法胶粘剂
电工电子产品
国标/吨19394,光伏(PV)的组件紫外试验
检测项目:
材料寿命推算 冷热冲击试验 盐雾老化测试 快速温变试验
人工气候老化 自然气候暴晒试验 紫外老化检测 臭氧老化检测
湿热老化检测 碳弧灯老化检测 氙灯老化检测
重点检测项目
1、紫外老化检测
采用荧光紫外灯为光源(有UVA,UVB不同型号灯源),通过模拟自然阳光中的紫外辐射和冷凝,对材料进行加速耐气候性试验,以获得材料耐候性的结果。
用来评估材料在颜色变化、光泽、裂纹、起泡、催化、氧化等方面的变化。
2、盐雾老化检测
盐雾试验是一种主要利用盐雾试验设备所创造的人工模拟盐雾环境条件来考核产品或金属材料耐腐蚀性能的环境试验。
3、臭氧老化检测
臭氧老化就是将试样暴露于密闭无光照的含有恒定臭氧浓度的空气和恒温的试验箱中,按预定时间对试样进行检测,从试样表面发生的龟裂或其它性能的变化程度,以评定试样的耐臭氧老化性能。
4、湿热老化检测
湿热老化检测适用于可能在温暖潮湿的环境中使用的产品,湿度试验、恒定湿热、交变湿热,是可靠性测试的一种。
试验的目的:检验产品对温暖潮湿的环境的适应能力。
5、氙灯老化检测
氙灯老化测试就是评定户外无遮蔽使用和储存的设备经受太阳辐射热和光学效应的能力。
6、碳弧灯老化检测
碳弧灯分为两种,一种是封闭式碳弧灯,一种是阳光型碳弧灯。
这两种碳弧灯都是应用于早期的设备,前者*初用于纺织品耐光测试,后者*初用于涂层的耐光性测试。
7、冷热冲击试验(温度冲击、快速温变)
冷热冲击测试是将试验样品交替暴露于低温和高温空气(或合适的惰性气体)中,使其经受温度快速变化的影响。
用以确定元件,设备和其他产品经受环境温度迅速变化的能力。
8、气体腐蚀检测
在一定的温度和湿度的环境下,利用H2S、SO2、NO2、Cl2等有害气体对材料或产品进行加速腐蚀,重现材料或产品在一定时间范围内所遭受的破坏程度。
考核材料及防护层的抗气体腐蚀的能力,以及相似防护层的工艺质量比较,也可以用来考核某些产品的抗气体腐蚀的能力。