北京西门子电机授权经销商
浔之漫智控技术(上海)有限公司(XMZ-WH-SHQW)
PLC控制采用步进电机伺服控制驱动方案简介
步进电机以其价格合理、****、控制方便等优点已在机床等机电一体化设备中得到了广泛应用。步进电机必须靠控制器、驱动电源提供的脉冲等信号完成升频、降频、快进、变速、停止、反向等工作,所以控制电路、驱动电源的水平决定着步进电机运行性能与稳定性。而如何使控制更简单、方便、经济则是步进电机应用方面的另一重要课题。
目前,很大一批机电一体化设备、机床设备和自动化生产设备都采用了PLC控制,其中一部分功能需要采用步进电机伺服控制驱动方案。例如:需要实现多速、多行程的进给控制或辅助控制(磨削进给、砂轮自动修正等)的场合。
PLC本身不具有高速脉冲输出,为此要在PLC的基础上增加与步进电机控制配套的附加智能控制模块。该模块加上带细分的驱动电源,整个控制部分的成本就比较高
Wincc6.2,416-2DP+DI、DO、AI、AO(600点)+液压缸+变频器 变量存储器与局部存储器十分相似,只不过变量存储器存放的是全局变量,它用在程序执行的控制过程中,控制操作中间结果或其他相关数据,变量存储器全局有效,全局有效是指同一个存储器可以在任意程序分区(主程序、子程序。北京西门子电机授权经销商
374仿真模块工业通讯网络化的应用模块通常具有即时注射和即时切换功能,配备检测器和分离柱。可以立即进行运算操作的数据叫立即数,对立即数直接进行读写的操作寻址称为立即寻址。立即寻址可用于提供常数和设置初始值等。
中间继电器在控制电路中主要用来传递信号、扩大信号功率以及将一个输入信号变换成多个输出信号等。中间继电器的基本结构及工作原理与接触器完全相同。但中间继电器的触点对数多,且没有主辅之分,各对触点允许通过的电流大小相同,多数为5A。
74SimaticS7-200SMARTPLC是全新的针对经济型自动化市场的自动化控制产品。该产品在中国进行研发和生产、凝聚了西门子中德工程师的丰富经验,以期满足不断增长的中国OEM市场,并为客户提供经济、便捷以及可靠的自动化控制产品。
侧参数的设置采用iAMT技术和SIMATICIPCRemoteManager软件实现远程维护程序区用来存储用户程序,存储器为EEPROM;系统区用来存储PLC配置结构的参数如PLC主机和扩展模块I/O配置和编制、PLC站地址等,存储器为EEPROM。
因而,不要追赶zui高转速容许值。可配备专用话机数量参数:选配在很低的频率下是可以的,但如果给定频率高则同工频电源直接起动的条件相近。将流过大的起动电流(6~7倍额定电流),由于西门子变频器切断过电流,电机不能起动。北京西门子电机授权经销商
通过MPI、PROFIBUS或PROFINET实现网络连接。 2、逻辑控制模块LOGO。230RC、230RCO、230RCL、24RC、24RCL等按下SB1按钮或过载保护(FR)动作,不论电动机是在启动还是运行情况下都可使主控触点断开,电动机停止运行。
可连接7个扩展模块,zui大扩展至248路数字量I/O点或35路模拟量I/O点。13K字节程序和数据存储空间。6个独立的30kHz高速计数器,2路独立的20kHz高速脉冲输出,具有PID控制器。2个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。
间接寻址中间继电器图形符号PLC发展到今 天,已经形成了大、中、小各种规模的系列化产品,可以用于各种规模的工业控制场合。除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。
高压变频器
1测量仪表
面对变频器含有大量谐、畸变或是非工频的电量,准确的测量方法是采用具有FFT功能的仪器。
对于高压、大容量的变频器进行测试,由于电压、电流数值较大,一般的仪表不能满足要求,要采用电压或电流传感器,然后再接仪表进行测量。WP4000变频功率分析仪根据搭配不同的变频功率传感器Z高测试可实现电压10kV、电流7000A高压变频器的输入、输出、效率测试。
包括:
输入值:额定输入电压、额定输入电流、额定容量、有功功率、功率因数、输入各次谐波、输入总谐波失真度。
输出值:Z大额定输出电压、额定连续电流、额定功率、频率范围、过载能力、输出各次谐波、输出总谐波失真度。
效率:在设计的频率范围内,各个频率下的效率。
2基本原理
高压大功率变频调速装置被广泛地应用于大型矿业生产厂、石油化工、市政供水、冶金钢铁、电力能源等行业的各种风机、水泵、压缩机、轧钢机等。
在冶金、化工、电力、市政供水和采矿等行业广泛应用的泵类负载,占整个用电设备能耗的40%左右,电费在自来水厂甚至占制水成本的50%。这是因为:一方面,设备在设计时,通常都留有一定的余量;另一方面,由于工况的变化,需要泵机输出不同的流量。随着市场经济的发展和自动化,智能化程度的提高,采用高压变频器对泵类负载进行速度控制,不但对改进工艺、提高产品质量有好处,又是节能和设备经济运行的要求,是可持续发展的必然趋势。对泵类负载进行调速控制的好处甚多。从应用实例看,大多已取得了较好的效果(有的节能高达30%-40%),大幅度降低了自来水厂的制水成本,提高了自动化程度,且有利于泵机和管网的降压运行,减少了渗漏、爆管,可延长设备使用寿命。北京西门子电机授权经销商
调节方法
泵类负载的流量调节方法及原理
泵类负载通常以所输送的液体流量为控制参数,为此,常采用阀门控制和转速控制两种方法。
阀门控制
这种方法是借助改变出口阀门开度的大小来调节流量的。它是一种相沿已久的机械方法。阀门控制的实质是改变管道中流体阻力的大小来改变流量。因为泵的转速不变,其扬程特性曲线H-Q保持不变。北京西门子电机授权经销商
当阀门全开时,管阻特性曲线R1-Q与扬程特性曲线H-Q相交于点A,流量为Qa,泵出口压头为Ha。若关小阀门,管阻特性曲线变为R2-Q,它与扬程特性曲线H-Q的交点移到点B,此时流量为Qb,泵出口压头升高到Hb。则压头的升高量为:ΔHb=Hb-Ha。于是产生了阴线部分所示的能量损失:ΔPb=ΔHb×Qb 。
转速控制
借助改变泵的转速来调节流量,这是一种先进的电子控制方法。转速控制的实质是通过改变所输送液体的能量来改变流量。因为只是转速变化,阀门的开度不变,如图2所示,管阻特性曲线R1-Q也就维持不变。额定转速时的扬程特性曲线Ha-Q与管阻特性曲线相交于点A,流量为Qa,出口扬程为Ha。
当转速降低时,扬程特性曲线变为Hc-Q,它与管阻特性曲线R1-Q的交点将下移到C,流变为为Qc 。此时,假设将流量Qc控制为阀门控制方式下的流量Qb,则泵的出口压头将降低到Hc。因此,与阀门控制方式相比压头降低了:ΔHc=Ha-Hc。据此可节约能量为:ΔPc=ΔHc×Qb。与阀门控制方式相比,其节约的能量为:P=ΔPb+ΔPc=(ΔHb-ΔHc)×Qb。
将这两种方法相比较可见,在流量相同的情况下,转速控制避免了阀门控制下因压头的升高和管阻增大所带来的能量损失。在流量减小时,转速控制使压头反而大幅度降低,所以它只需要一个比阀门控制小得多的,得以充分利用的功率损耗。