品名 : | 模具钢 |
台州 浙江H13模具钢 H13圆钢 H13钢棒 锻圆
H13属于热作模具钢,是在碳工钢的基础上加入合金元素而形成的钢种,执行标准GB/T1299-2014。
化学成分:
C | Si | Mn | Cr | Mo | V | P | S |
0.32~0.45 | 0.80~1.20 | 0.20~0.50 | 4.75~5.50 | 1.10~1.75 | 0.80~1.20 | ≤0.030 | ≤0.03 |
H13钢是C-Cr-Mo-Si-V型钢,在世界上的应用极其普遍,同时各国许多学者对它进行了广泛的研究,并在探究化学成分的改进。钢的应用广泛和具有优良的特性,主要由钢的化学成分决定的。当然钢中杂质元素必须降低,有资料表明,当Rm在1550MPa时,材料含硫量由0.005%降到0.003%,会使冲击韧度提高约13J。NADCA 207-2003标准就规定:优级(premium)H13钢含硫量小于0.005%,而超级(superior)的应小于0.003%S和0.015%P。下面对H13钢的成分加以分析。碳:美国AISI H13,UNS T20813,ASTM(最新版)的H13和FED QQ-T-570的H13钢的含碳量都规定为(0.32~0.45)%,是所有H13钢中含碳量范围最宽的。德国X40CrMoV5-1和1.2344的含碳量为(0.37~0.43)%,含碳量范围较窄,德国DIN17350中还有X38CrMoV5-1的含碳量为(0.36~0.42)%。日本SKD 61的含碳量为(0.32~0.42)%。我国GB/T 1299和YB/T 094中4Cr5MoSiV1和SM 4Cr5MoSiV1的含碳量为(0.32~0.42)%和(0.32~0.45)%,分别与SKD61和AISI H13相同。特别要指出的是:北美压铸协会NADCA 207-90、207-97和207-2003标准中对H13钢的含碳量都规定为(0.37~0.42)%。
钢中含碳量决定淬火钢的基体硬度,按钢中含碳量与淬火钢硬度的关系曲线可以知道,H13钢的淬火硬度在55HRC左右。对工具钢而言,钢中的碳一部分进入钢的基体中引起固溶强化。另外一部分碳将和合金元素中的碳化物形成元素结合成合金碳化物。对热作模具钢,这种合金碳化物除少量残留的以外,还要求它在回火过程中在淬火马氏体基体上弥散析出产生两次硬化现象。从而由均匀分布的残留合金碳化合物和回火马氏体的组织来决定热作模具钢的性能。由此可见,钢中的含C量不能太低。
用途:
用途和9CRWMN模具钢基本相同,但因其钒含量高一些,故中温(600度)性能比4Cr5MoSiV钢要好,是热作模具钢中用途很广泛的一种代表性钢号。
H13模具钢用于制造冲击载荷大的锻模,热挤压模,精锻模;铝、铜及其合金压铸模。
基本信息:
统一数字代号T20502;牌号4Cr5MoSiV1。在中温(~600°)下的综合性能好,淬透性高(在空气中即能淬硬),热处理变形率较低,其性能及使用寿命高于3Cr2W8V。可用于模锻锤锻模、铝合金压铸模、热挤压模具、高速精锻模具及锻造压力机模具等。
性能要求
1. 强度性能
(1)硬度硬度是模具钢的主要技术指标,模具在高应力的作用下欲保持其形状尺寸不变,必须具有足够高的硬度。冷作模具钢在室温条件下一般硬度保持在HRC60左右,热作模具钢根据其工作条件,一般要求保持在HRC40~55范围。对于同一钢种而言,在一定的硬度值范围内,硬度与变形抗力成正比;但具有同一硬度值而成分及组织不同的钢种之间,其塑性变形抗力可能有明显的差别。
(2)红硬性 在高温状态下工作的热作模具,要求保持其组织和性能的稳定,从而保持足够高的硬度,这种性能称为红硬性。碳素工具钢、低合金工具钢通常能在180~250℃的温度范围内保持这种性能,铬钼热作模具钢一般在550~600℃的温度范围内保持这种性能。钢的红硬性主要取决于钢的化学成分和热处理工艺。
(3)抗压屈服强度和抗压弯曲强度 模具在使用过程中经常受到强度较高的压力和弯曲的作用,因此要求模具材料应具有一定的抗压强度和抗弯强度。在很多情况下,进行抗压试验和抗弯试验的条件接近于模具的实际工作条件(例如,所测得的模具钢的抗压屈服强度与冲头工作时所表现出来的变形抗力较为吻合)。抗弯试验的另一个优点是应变量的值大,能较灵敏地反映出不同钢种之间以及在不同热处理和组织状态下变形抗力的差别。
2. 韧性
在工作过程中,模具承受着冲击载荷,为了减少在使用过程中的折断、崩刃等形式的损坏,要求模具钢具有一定的韧性。
模具钢的化学成分,晶粒度,纯净度,碳化物和夹杂物等的数量、形貌、尺寸大小及分布情况,以及模具钢的热处理制度和热处理后得到的金相组织等因素都对钢的韧性带来很大的影响。特别是钢的纯净度和热加工变形情况对于其横向韧性的影响更为明显。钢的韧性、强度和耐磨性往往是相互矛盾的。因此,要合理地选择钢的化学成分并且采用合理的精炼、热加工和热处理工艺,以使模具材料的耐磨性、强度和韧性达到的配合。
冲击韧性系表特征材料在一次冲击过程中试样在整个断裂过程中吸收的总能量。但是很多工具是在不同工作条件下疲劳断裂的,因此,常规的冲击韧性不能全面地反映模具钢的断裂性能。小能量多次冲击断裂功或多次断裂寿命和疲劳寿命等试验技术正在被采用。
3. 耐磨性
决定模具使用寿命最重要的因素往往是模具材料的耐磨性。模具在工作中承受相当大的压应力和摩擦力,要求模具能够在强烈摩擦下仍保持其尺寸精度。模具的磨损主要是机械磨损、氧化磨损和熔融磨损三种类型。为了改善模具钢的耐磨性,就要既保持模具钢具有高的硬度,又要保证钢中碳化物或其他硬化相的组成、形貌和分布比较合理。对于重载、高速磨损条件下服役的模具,要求模具钢表面能形成薄而致密粘附性好的氧化膜,保持润滑作用,减少模具和工件之间产生粘咬、焊合等熔融磨损,又能减少模具表面进行氧化造成氧化磨损。所以模具的工作条件对钢的磨损有较大的影响。
耐磨性可用模拟的试验方法,测出相对的耐磨指数,作为表征不同化学成分及组织状态下的耐磨性水平的参数。以呈现规定毛刺高度前的寿命,反映各种钢种的耐磨水平;试验是以Cr12MoV钢为基准进行对比。
4. 抗热疲劳能力
热作模具钢在服役条件下除了承受载荷的周期性变化之外,还受到高温及周期性的急冷急热的作用,因此,评价热作模具钢的断裂抗力应重视材料的热机械疲劳断裂性能。热机械疲劳是一种综合性能的指标,它包括热疲劳性能、机械疲劳裂纹扩展速率和断裂韧性三个方面。
热疲劳性能反映材料在热疲劳裂纹萌生之前的工作寿命,抗热疲劳性能高的材料,萌生热疲劳裂纹的热循环次数较多;机械疲劳裂纹扩展速率反映材料在热疲劳裂纹萌生之后,在锻压力的作用下裂纹向内部扩展时,每一应力循环的扩展量;断裂韧性反映材料对已存在的裂纹发生失稳扩展的抗力。断裂韧性高的材料,其中的裂纹如要发生失稳扩展,必须在裂纹具有足够高的应力强度因子,也就是必须有较大的裂纹长度。在应力恒定的前提下,在一种模具中已经存在一条疲劳裂纹,如果模具材料的断裂韧性值较高,则裂纹必须扩展得更深,才能发生失稳扩展。
也就是说,抗热疲劳性能决定了疲劳裂纹萌生前的那部分寿命;而裂纹扩展速率和断裂韧性,可以决定当裂纹萌生后发生亚临界扩展的那部分寿命。因此,热作模具如要获得高的寿命,模具材料应具备高的抗热疲劳性能、低的裂纹扩展速率和高的断裂韧性值。
抗热疲劳性能的指标可以用萌生热疲劳裂纹的热循环数,也可以用经过一定的热循环后所出现的疲劳裂纹的条数及平均的深度或长度来衡量。
5. 咬合抗力
咬合抗力实际就是发生"冷焊"时的抵抗力。该性能对于模具材料较为重要。试验时通常在干摩擦条件下,把被试验的工具钢试样与具有咬合倾向的材料(如奥氏体钢)进行恒速对偶摩擦运动,以一定的速度逐渐增大载荷,此时,转矩也相应增大,该载荷称为"咬合临界载荷",临界载荷愈高,标志着咬合抗力愈强。
台州 浙江H13模具钢 H13圆钢 H13钢棒 锻圆