小型生活污水处理设备 技术指导

小型生活污水处理设备 技术指导

发布商家
上海新德瑞环保科技有限公司
联系人
欧阳(先生)
手机
13585459000
价格
¥25993.00/台
品牌
新得瑞
型号
按需定制
产地
江苏常州

橡胶助剂废水、农药废水、医药废水等精细化工废水,具有难降解有机物浓度高、成分复杂、有毒有害物质多、可生化性差等特点,给直接生化处理带来了困难。因此,针对化工园区综合废水,必须大幅降低这些毒性物质对生化处理过程的抑制作用,提高废水的可生物降解性。目前,多数废水处理厂对化工园区内综合废水先采取预处理,然后进入正常的废水处理工艺,于小朋等采用分质预处理方式,分别利用絮凝沉淀+过电位三维电解、Fe-Cu微电解+絮凝沉淀工艺对制药废水、染料废水进行预处理,再经生化处理可达标排放。来同丽等采用铁碳微电解Fenton耦合磁粉预处理有机磷农药废水,通过铁碳微电解和Fenton工艺的协同作用去除有机物,取得了很好的效果。目前,国内外采用铁碳Fenton法联合处理单一行业化工废水的研究较多,但是对化工园区综合废水处理研究甚少。

江苏省某化工园区生产的主要产品有橡胶助剂、农药(氯氟氰菊酯、氟噻草胺、多杀菌素等)、消泡剂、医药中间体、合成氨等,废水中特征污染物有邻苯二甲酰亚胺、二甲基甲酰胺、聚醚、氯烷、氰化物、对甲苯磺酸、氯苯等,具有难降解、对微生物有抑制作用等特点。该园区污水处理厂拟采用分类收集、分质预处理的工艺:一般化工废水直接排入园区污水厂;难降解精细化工废水排入分质预处理系统,并采用铁碳微电解+Fenton氧化+絮凝沉淀联合预处理工艺降低废水生物毒性、提高可生化性。因此,本文采用铁碳微电解+Fenton氧化+絮凝沉淀组合工艺预处理化工综合废水,通过中试试验研究其在不同条件下的处理效率,并通过连续运行优化工艺条件,为该化工园区污水处理厂分质预处理提供设计依据。

1、试验

1.1 试验用水

本试验用水为淮安某化工园区综合废水,水质如表1所示。


1.2 主要药剂与分析方法

试验药剂:32%NaOH,27.5%H2O2,硫酸,PAM,均为工业级;不规则球形铁碳填料,直径为2~3cm,比重为1.3t/m3,比表面积为1.3m2/g,填料空隙率为65%,铁精粉含量为75%以上,含碳量为17%,催化剂含量为5%,山东潍坊某环保科技有限公司。

分析方法:CODCr采用重铬酸盐法(HJ828—2017);BOD5采用五日生化接种稀释法;pH采用pH计测量;数据图表采用oringin软件绘制。

1.3 试验装置

铁碳-Fenton-絮凝沉淀工艺中试装置处理水量为100L/h,主要分为调节池、铁碳微电解柱、Fenton催化氧化柱、中和絮凝沉淀池4个部分。调节池尺寸为1000mm×1000mm×1000mm,有效容积为0.9m3;铁碳微电解柱为PP材质,Φ=600mm×1800mm,铁碳填料高度为0.82m,填充量为300kg;Fenton氧化柱为PP材质,Φ=600mm×1700mm,有效容积为0.396m3;絮凝沉淀池为PP材质,含中和区、絮凝区、配水区、沉淀区、出水区,有效容积为0.5m3;曝气采用PVC曝气盘,Φ=215mm,安装在铁碳柱底部。

1.4 试验步骤

1.4.1 铁碳预处理

试验前用清水清洗铁碳填料后,在化工园区综合废水中浸泡24h,确保铁碳填料中的碳吸附饱和。

1.4.2 铁碳微电解对COD的去除

原水调至不同pH,经提升进入铁碳填料电化学氧化塔,同时通入空气均质,废水与内置铁碳填料接触反应,初级氧化废水中污染物,并释放Fe2+催化剂随废水进入后续工艺。

1.4.3 Fenton氧化法对微电解出水中COD的去除

铁碳电化学氧化反应器出水进入Fenton催化氧化反应器,同时加入不同浓度的双氧水(H2O2),在废水中Fe2+的催化作用下,氧化去除废水中绝大多数可被其氧化的有机物,反应完成后进入絮凝沉淀池,絮凝沉淀后上清液进入存水箱。中试工艺流程如图1所示。


2、结果与讨论

2.1 不同条件下对COD的去除率

本试验通过铁碳微电解-Fenton氧化-絮凝沉淀联合预处理工艺处理化工综合废水,以出水COD为测定指标,考察在铁碳微电解工艺的pH、反应时间以及Fenton氧化工艺的H2O2投加量3个因素下,CODCr去除率的变化情况。

2.1.1 pH

铁碳填料在酸性、有氧的条件下有较高的COD去除率,阳极反应如式(1),阴极反应如式(2)。


H+越多,生成的Fe2+就越多。考虑到原水pH值为6~9,倘若pH过低,会增加铁碳填料的损耗,使水体中总铁离子过量,增加水体色度,同时产生额外的处理成本。因此,试验研究pH值在2~6时对铁碳微电解去除CODCr的影响。

进水量为100L/h,曝气量为1.6L/min,进水CODCr为429mg/L,BOD5为72.9mg/L,B/C为0.17,铁碳反应时间为1.5h时,废水CODCr去除率随pH变化如图2所示。为消除Fe2+对CODCr测定的影响,将铁碳出水pH值调至9,沉淀后取上清液检测COD。由图2可知,pH值3时,去除率有明显下降的趋势,这是因为pH的升高会降低电极电位差,减弱电化学反应,会抑制反应的进行。因此,后续试验中,铁碳进水在pH值=3的条件下进行,此时,检测铁碳出水pH值在5.0~5.5,加入H2O2后Fenton反应pH值在3.0~3.5,满足《芬顿氧化法废水处理工程技术规范》(HJ1095—2020)中Fenton氧化pH值宜控制在3.0~4.0的要求。因此,在铁碳出水后进入Fenton氧化前不再调酸。


2.1.2 反应时间

为了使电化学的氧化还原作用充分反应,铁碳微电解需要一定的停留时间来降解污染物。接触时间短,会使得反应过程进展的不完全;时间过长,不但耗时还会对设备投资过大,因此,停留时间的长短决定了污染物去除率的高低。

图3为进水pH值=3、曝气量为1.6L/min、进水CODCr为429mg/L时,废水COD去除率随反应时间的变化。由图3可知,反应时间为0.5~1.5h时,COD去除率呈现出明显的上升趋势;当反应时间为1.5h时,走势趋于平缓且去除率达到大值24.0%;但随着反应时间继续延长,去除率增加不明显(1.5~3h仅增加了1.4%)。反应1.5h出水BOD5为78.2mg/L,B/C由0.17提高至0.24。因此,在后续进行Fenton试验中,将进水pH值调至3,反应时间为1.5h,进行铁碳微电解预处理。


人气
93
发布时间
2023-11-22 11:51
所属行业
污水处理成套设备
编号
40180004
我公司的其他供应信息
相关生活污水产品
拨打电话 请卖家联系我