对于高盐废水的处理,传统方法是首先将废水减量浓缩,然后将浓缩液通过蒸发技术使盐结晶,终实现废水脱盐和盐资源的回收。目前,已大规模工业化的浓缩方法主要有热法和膜分离法。热法主要是通过加热的方式,将高盐废水中的水分蒸发出来,以达到浓缩和减容的目的,该方法通常利用水蒸气作为热源,因此耗能巨大,运行成本非常高。膜分离法使用选择性透过膜作为过滤介质,以压力差、电势差、渗透压等作为驱动力,实现含盐废水的浓缩,常见的膜分离工艺有微滤、超滤、反渗透、电渗析等。对于膜技术,目前存在的主要问题是膜元件成本高、膜污染及清洗等问题。
膜蒸馏技术是传统热蒸发过程与膜分离技术相结合的新型分离技术,其原理是在疏水性微孔膜的拦截作用下,阻止废液以液体形式穿透膜孔,仅以挥发组分在膜两侧蒸汽压差的推动下穿透膜孔,而非挥发组分则被拦截,终实现混合物的分离和提纯,具有浓缩倍数高、能耗低等(使用30~70℃的低品热源)特点。在常见的膜蒸馏技术中,真空膜蒸馏技术(vacuum membrane distillation,VMD)是利用真空泵使膜的透过侧维持负压状态,从而增加膜两侧的蒸气压差以提高膜通量,与其他膜蒸馏技术相比,具有膜通量高、温度极化程度低等显著优点,近年来得到了研究人员的广泛关注。Mericq等采用VMD技术对反渗透处理后的海水浓缩液进行进一步浓缩,实验结果表明,当透过侧压力为6000Pa、温度为50℃、雷诺数为4000、进水含盐量为64~300g/L时,膜通量可达7~17L/(m2•h),VMD工艺可将反渗透处理后的海水浓缩液的体积减少81.9%。刘宇程等采用VMD技术处理经湿式氧化后的页岩气压裂返排液,结果表明,当进水COD为299mg/L、NaCl浓度为67870mg/L时,在操作条件为料液温度70℃、真空度0.085MPa、运行时间为90min情况下,出水NaCl含量仅为1.17mg/L,出水COD降至93.2mg/L。Wen等应用VMD技术处理低放射性废水,实验结果表明,当进水含盐量高达80g/L时,VMD工艺对Cs(Ⅰ)、Sr(Ⅱ)和Co(Ⅱ)的去污因子可分别达到6000、3700和8300。游文婷等采用VMD工艺对硫酸钠和氯化钙模拟废水进行了处理研究,实验选用聚四氟乙烯平板膜作为膜组件,结果表明:随着进水温度的升高、冷侧压强的减小,通量随之增大,VMD工艺的截留率均达到了99.99%以上。另外,随着膜材料和疏水膜制造工艺的不断发展,在保证较高膜通量的前提下,可有效降低膜污染问题,提高VMD工艺的稳定性和可靠性。
因此,对于高含盐工业废水,如油气田产出水、炼化废水等须回用或外排的高盐废水,真空膜蒸馏技术是一个较好的选择。本研究采用聚丙烯中空纤维膜元件,研究了真空膜蒸馏技术在不同条件下处理模拟高含盐废水的效果,分析了各因素对膜通量的影响程度,对真空膜蒸馏技术进行了初步探索,为高含盐工业废水提供新的处理选择。