2023第23届中国国际工业博览会新一代信息技术与应用展/工业互联网展(ICTS/IIS)时间:2023年9月19-23日 地点:国家会展中心(上海)工博会总面积:280,000平米主办:国家发改委、商务部、工信部、科技部、中科院、中国工程院、中国贸促会、上海市人民政府、联合国工业发展组织协办:中国信息通信研究院、工业互联网产业联盟承办:东浩兰生(集团)有限公司第二十三届中国国际工业博览会将于2023年9月19-23日在国家会展中心(上海)举行,设9大展,展会面积大于28万平方米,超过2700家展商参展,同期精彩活动50余场,预计逾20万中外观众参观。
新一代信息技术与应用展(工业互联网展)聚焦量子信息、5G、物联网、数字孪生、人工智能、增材制造等前沿技术趋势,以“5G+工业互联网”、“工业软件”及“数字化供应链”领域为发展重点,加速新一代信息技术与制造业产业链融合,推动行业企业与合作伙伴共赢,通过展览展示、高峰论坛、对接、媒体访谈、线上线下直播互动等形式,探索数字化、智能化、网络化方案赋能数字工业可持续发展的国际化的展会生态。
工业互联网(Industrial Internet)是新一代信息通信技术与工业经济深度融合的新型基础设施、应用模式和工业生态,通过对人、机、物、系统等的全面连接,构建起覆盖全产业链、全价值链的全新制造和服务体系,为工业乃至产业数字化、网络化、智能化发展提供了实现途径,是第四次工业革命的重要基石。
工业互联网主要由网络、平台、安全三大部分组成,其中网络是基础,特别是5G低时延网络是保证工业互联网的基础,而数据和平台是工业互联网的核心,安全是保障。
工业互联网厂商非常多,从基本的连接端到云服务端,从IaaS端到PaaS端再到工业数据分析展示和可视化平台再到具体应用场景,设计仿真、生产优化、运营管理、资产运维、能耗管理、采购优化等,都是在工业里利用物联网的数据采集和大数据分析后才能创造出的应用场景。
个是提出工业互联网概念的GE旗下Digital部门,提出“通过发掘数据的价值实现高效的产出”。
不幸的是GE已经在2018年开始出售Predix,主要原因有几个:一,GE Digital受到燃机、油气、电力等系列主营业务的市场疲软影响;二,低估了工业企业数字化进程的难度;三,过于强调云平台和IT能力,忽视了客户对应用的需求,盈利模式不清晰;四,进行的并购和整合并没有达到通过一个平台统一不同的应用软件和交付能力的有效目的。
GE Digital的规划目标,是希望通过Predix平台结合应用Operation Performance Management(运营绩效管理)和Asset Performance Management(设备性能管理),通过设备的健康和可靠性管理、合规性管理、资产优化、策略优化,以达到运营性能的管理,包括提升运营效率、实现过程优化等。
工业互联网的核心技术有四个:一,边缘计算是有强刚需的工业应用场景,通过边缘端的实时数据采集、云端的数据分析和应用开发以实现高效协同,是云端应用对边缘端实时数据采集的响应和控制过程;二,大数据平台也非常关键,以前的工业数据都是小数据,很多数据处理都在边缘完成,并没有汇总起来进行相关性分析和统一趋势分析,因此实现应用和数据解耦的大数据平台也很关键;三,数字孪生,即通过数据化方式为工业设备定义数据结构,结合数据分析对设备的过去、当前和未来进行深入的洞悉,完成设备从物理向虚拟环境映射的关键描述;四,通过专家经验+人工智能的方式,基于专家经验指导的大数据样本标注,通过人工智能算法训练开发相应的故障诊断和预测模型,实现判决。
工业互联网三大高端制造应用场景什么是高端制造?高端制造与中高端制造、中低端制造不一样之处在于:一,生产过程基本上都是连续的,比如流程制造;二,需要众多不同大型设备的高效协同,属于复杂工艺。
像石油、电力、石化、光电、半导体等高端制造的可能有几百个不同的子生产过程, 需要保证每个生产过程都得到严格的管控,才能完成终预期的产出;三,高度自动化的生产过程,可以根据实时采集的各种工况参数,对控制过程进行自动化的实时响应;四,对质量、产能、风险、成本等的精细化管理要求极高,需要非常的过程控制和结果检验机制。
工业互联网在高端制造里应用场景很多,而当前的高端制造普遍呈现资产密集、资产性能优化空间大,数字化程度高但数据利用率低,经验驱动、缺少科学决策能力的局面。
通过结合工业互联网的赋能,即资产性能管理、运营效率提升、能源管理优化、安全生产环保、工业控制安全,可达到:一,提高资产运营的效率,降低非计划停机带来的风险影响;二,提高资产利用的效率,降低排放、降低能耗、提高安全生产、实现环保,构建产业生态。
正是因为高端制造普遍的体量都比较大,所以哪怕提高1%,都能创造巨大的价值。
高端制造的工业互联网的核心不是数据采集,而是一层一层传递的数据的价值。
工业互联网平台,能够起到加速整个价值传递过程的作用,一方面能够汇聚来自不同设备和业务系统的数据,构建数据中台,对数据进行规范和治理,以及针对离散化、场景化的数据分析;另一方面,它也提供了大量的跨应用系统的能力重用模块,让应用的交付、数据的分析变得更便捷和更简单。
相对于传统的PLC、DCS、MES或ERP这些传统的IT和OT系统,工业互联网应用着眼点放在了新技术解决老问题上,它通过运用物联网、大数据、云计算和人工智能等先进的IT技术,去解决原先由于数据量、数据处理能力、实时性等限制而不能得到很好解决的设备可靠性、工艺质量以及企业经营决策等方面问题,可以说是原有IT和OT系统的升级和重构。
高端制造的工业互联网应用非常离散化,应用场景主要是三类,设备资产管理、运营性能管理和生产经营决策。
资产性能管理的目标是提高资产(也就是设备)的可靠性,避免非计划停机;只有保证了设备的可靠性,才能保证运营过程中的产能、质量、成本的有效提升,才能优化运营指标;而只有保证了运营效率的提升,才能实现企业经营利润的提升和经营风险的规避,所以这三层是通过数据的价值环环相扣的。
应用场景1:资产性能管理。
大型高端制造都有关键的大型设备,这些设备在连续生产过程中的停机风险,会造成很大影响。
普遍来说,进行有效设备维护的策略有:一是被动式维护,就是坏了再修,这种维护成本高;二是预防性维修,为了避免被动维修引起的设备停机停产,现阶段采用较多的是预防性维修,也就是定期保养;三是视情况维修或基于状态维修,因为前两种的成本相对比较高,因此采用振动分析、红外、超声等检测仪器,对关键设备进行相应的判决和检测,基于检测的结果决定是否要维修,提前修还是推后修;四是预测维修,基于海量数据分析对设备的实时状态做评估,再决定是否要维修;第五,RCM或基于风险评估,结合实时数据对设备保养策略的一系列计算,得到基于风险管控的维护策略,实现更的维护。
目前GE和Uptake已经做到了基于可靠性的维修或基于风险维护的完整策略。
现在的问题是:一,无法实现实时的判决和诊断,无法根据动态的工况进行调整;二,无法实现**的故障定位,无法实现**的指标计算;三,无法实现**的寿命预测,无法实现预测性维护;四,无法积累、优化和复制专家经验,无法实现知识的自我学习和进化。
资产性能管理系统主要涉及三方面:一是数据,即机器的实时数据、历史维护记录、失效记录、产品手册等;二是机理,像F***、控制理论等基本的工业模型;三是数据分析,变点检测、时序预测、聚类回归、机器学习、神经网络等结合在一起,才能产生一个相对完整的设备资产管理系统,实现实时监测、故障诊断预测、可靠性管理等一系列功能,终目标是降低停机概率、降低运营风险、实现更快的响应能力。
怎么利用数据分析实现资产的高效性能分析呢?主要还是利用机器的数据。
基于机器的历史数据可以构建不同状态下的历史数据样本,开发各类故障的特征模型,与当前传感器数据进行对比,从而对当前的设备进行实时的健康评估。
基于历史数据也可以构建性能预测指标,通过对比指标就可以知道设备未来在什么时间可能会出问题,可以计算剩余寿命以优化维护策略。
应用场景2:运营性能管理。
在工业生产过程中有很多设备都产生数据,像工艺数据、质量数据、维护数据等,都可以通过工业互联网平台采集出来,做工艺参数优化、良率优化、虚拟量测、关键指标建模、燃烧环保优化、能源管理等一系列分析。
通过实时采集生产过程中设备、工艺、质检、环保、环节数据,结合数据挖掘和人工智能分析,可以实现生产工艺、品质还有运营效率全方面的优化。
举几个简单例子:一,工作模式自动识别。
在运营中对设备的工作状态进行识别,只有识别了不同的工作状态才能区别出在不同工作状态下的工作效率和关键KPI指标,这种识别原来全是手动识别或是专家经验识别,现在完全可以通过机器学习再结合专家经验的方式提取规则,创造自动识别的过程。
二,异常检测。
由于能够区分不同的工作状态,才能对不同的工作状态设一个稳定值,这叫SPEC值。
一个设备可能工作在不同的SPEC和不同的工艺过程下,所以每个工艺过程要区分不同的工作状态,才能知道应该改进哪些关键工艺参数。
三,根因分析。
根因分析就是有多少种原因会导致终的不良或排放、燃烧等关键指标低下。
这种根因分析往往是在不同时间维度上产生的,可能几个小时之前的一个工艺参数会导致后生产结果的质量、品质或关键指标的劣化。
数据分析需要把不同时间维度的海量数据结合在一起,通过相关性分析、相似度搜索等数据分析的方式,匹配到有可能产生问题的一个匹配关系上。
四,SPEC的快速确定。
在不同工艺上,比方说85%、70%、65%的良率情况下对应不同的工艺参数范围,很多时候都需要从历史数据中找出相应特定条件下相关信号的工作范围,进而确定相应的SPEC值,这有助于帮助一个企业快速投产、快速从小批量生产进入到大批量生产的加速过程。
五,稳定性控制和评估。
在关键的生产过程中,有一些海量产出关键指标,比如半导体生产过程中的CD值,即关键的线宽要保证在一定的范围内抖动。
利用数据分析,通过SPC进行稳定性控制,实现相应的过程控制,以保证关键过程产出的稳定性。
六,工艺仿真。
在确定了输入和输出之间的关系后,能否通过回归或者神经网络找到一个线性、非线性的模型,当终检验结果的良率从85%掉到70%时,调整输入到某个关键值就能把良率从70%再拉回到85%?这些都可以通过海量的工业数据分析实现。
以上这些都是围绕着实时工艺的数据采集、分析、建模的过程。
通过运营效率的提升、数据分析、高效的运营规划,尽大可能的提高工厂的产能和利润,包括结合财务指标、价格曲线、降成本等都能实现完整的分析。
只要利用好数据分析,就可以产生极大的提升,很多时候创造的效能远远不止1%。
应用场景3:安全生产管控。
这部分主要针对能源化工等高端流程制造企业,通过采集设备端DCS的实时数据,结合检测系统、业务系统和外部数据,通过大数据、人工智能、机器学习等先进的信息技术,实现包括危险源在线监测、工艺参数实时告警、危险场景态势感知、重大风险预警预测在内的全面的安全生产管控,达到企业经营风险和经营利润的优平衡。
对于一个大型的发电厂或者大型化工企业,实时数据可以达到每秒钟几万到几百万万数据点。
一方面,很多关键设备的关键工艺参数、环境参数以及外部的危险源,仅靠人工巡检、实时监控和专家经验判断,是根本无法全面、实时的企业级别的安全管控要求。
通过大数据的方式,进行采集海量的实时数据并汇总、分析,基于历史数据构建起预测和风险模型,不仅能构建起全面的防范体系,还能对关键的监控参数以及风险事件进行预测。
另一方面,通过将不同发电厂、化工企业的实时数据汇总到集团的工业互联网平台,不仅能实现对关键工艺参数、关键风险源、风险事件的管控和指挥,也有助于集团层面实现跨企业的对标分析和优化,并实现对下属单位生产、耗能、排放等数据的实时采集,降低数据失真带来的经营风险,从行政管控转向数据驱动的智能决策。
总的来说,高端制造行业工业互联网的核心,在于工业数据的分析,而不在于工业数据的采集。
虽然国内有很多的工业互联网厂商,但大多都在做基础数据采集和展示。
数据采集固然很重要,但在面对不同类型的企业时,优先级有很大区分。
中小企业可能要看关键的几个指标做一些告警就够了,但高端制造客户还要实现对设备状态的可靠性分析、运营效率的分析、性能和良率预测等复杂的数据分析。
工业互联网领域将出现新的“BAT”,但这将是一个长期的过程而不会一蹴而就。
众所周知,工业是一个高度复杂和碎片化的产业,每一个细分领域都需要专门的工业知识与实践积累。
长期以来,BAT虽然一直想进入工业互联网领域,但由于难以形成一个大而全覆盖的平台,因此很难像主导消费互联网那样主导工业互联网的发展。
而在另一方面,工业是中国的立国之本,是实体经济的主战场。
现在的中国工业大而不强,自主创新能力不强,产品还处在中低端,供给能力明显不足。
我国工业还存在着被空心化、边缘化等问题,亟待转型升级。
而中国工业门类齐全,有41个大类、191个中类、525个小类;体量巨大,年增加值30万亿元,一。
无疑,中国工业的数字化转型是一个巨大的ICT市场,存在着巨大的机会。
工业数字化转型包括智能制造和工业互联网两大战场。
其中,智能制造主要是为制造设备和工厂等实现智能化、数字化和自动化,主要是将信息技术(IT)、数字技术(DT)与生产制造操作技术(OT)相结合。
由于不同工业领域的特殊性,智能制造更多是面向细分工业领域的技术和解决方案,难以形成较大的创业机会。
而工业互联网则是一个巨大的平台性机遇。
不过需要注意的是工业互联网是互联网与物联网相结合的产物,同时融入了云平台、大数据分析和人工智能等新兴科技,是工业环境下人、机、物、企业、生态等的全面互联,而不是简单的互联网模式,也缺乏相关的标准。