双铠室内光缆GYTS53的结构是将 250μm 光纤套入高模量材料制成的松套管中,松套管内填充防水化合物。缆芯的中心是一根金属加强芯,对于某些芯数的光缆来说,金属加强芯外还需要挤上一层聚(PE)。松套管(和填充绳)围绕中心加强芯绞合成紧凑和圆形的缆芯,缆芯内的缝隙充以阻水填充物。涂塑铝带(APL)纵包后挤一层聚内护套,双面涂塑钢带(PSP)纵包后挤制聚护套成缆。
● 松套管保护一次涂覆光纤
● 松套管绞合在加强件的周围
● 加强件在光缆的中心
● 采用“SZ”双向层绞技术
● 逐道工序阻水油膏填充,全截面阻水
● 钢(铝)带搭边粘结可靠,强度高,扭转不开裂
● 光纤余长控制稳定
● 成缆后,光纤的附加衰减近乎于零,色散值无变化
● 环境性能优良,适用温度区间为-10℃~+70℃
● 适合于架空、管道、直埋等敷设方式
● 直埋
● 地埋
● 穿管
结构特征
● 金属中心加强件(磷化钢丝)
● 双面覆塑铝带-聚粘结内护套
● 双面覆塑皱纹钢带-聚粘结内护套
● 双面覆塑铝带-聚粘结护套,防潮性能优良
● 双护层双铠装结构,抗压扁力性能优良
● 可有效防止啮齿类动物的损害
● 长途通信、局间通信
● 尤其适用于对防潮、防鼠等要求较高的场合
光缆芯数 |
光缆外径 |
光缆重量 |
弯曲半径 |
允许张力(N) |
允许侧压力(N/100MM) |
|||
静态 |
动态 |
短期 |
长期 |
短期 |
长期 |
|||
2-24 |
13.3 |
210 |
12.5 |
25 |
3000 |
1000 |
3000 |
1000 |
26-36 |
13.6 |
220 |
||||||
38-60 |
14.1 |
225 |
||||||
62-72 |
14.6 |
255 |
||||||
74-96 |
16.2 |
305 |
||||||
98-120 |
17.7 |
350 |
||||||
122-144 |
19.1 |
395 |
||||||
146-216 |
19.6 |
420 |
||||||
218-240 |
22.8 |
530 |
||||||
242-288 |
25.0 |
620 |
通信光纤具体分为G.651、G.652、G.653、G.654、G.655和G.656 ;G657七个大类和若干子类
G.651多模光纤(OM2)主要应用于局域网,不适用于长距离传输
G.652单模光纤(色散非位移单模光纤)常用单模光纤
G.653单模光纤(色散位移光纤)
G. 654光纤(截止波长位移光纤)是超低损耗光纤,也称为1550nm性能光纤,主要用于跨洋光缆
G.655单模光纤(非零色散位移光纤)
G.657(耐弯光纤) FTTH光缆常用 G.657A光纤与G.652光纤兼容
在模拟电路中,一般可分为输入电路、中间电路、输出电路、电源电路、附属电路等几部分。每一部分又可分解为几个基本的单元电路,而单元电路又是由各种元器件构成。还可用画框图的方法对整机电路进行分解,将电路按功能分成若干单元电路,找出它们之间的联系,搞清每一单元内元器件的作用,及每一单元电路的组成,进而了解单元电路之间具有何种关系,从而对整体电路有完整的了解。从静态到动态模拟电路中各种晶体管、集成电路是电路的核心,而它们在工作中需要建立静态工作点,才能实现对交流信号的放大作用。
三菱plc在国内自动化行业使用非常广泛,作为经典的日系工控产品品牌之一,他留给我的印象是简单、好用、便宜(相比欧美产品),编程软件也由原来的GXDeveloper推出了更强大的GXWorks2和GXWorks3,除了基本的梯形图简单工程外还支持ST,FBD,SFC等**语言结构化编程,可能由于时间短或者其他原因,在应用这些**语言时却有不少让人抓狂的BUG,下面就列举一些本人发现的BUG和不足,让大家少走弯路。