南昌西门子代理商
概述SIPROCESS GA700 系列是西门子的 一代气体分析仪,具有模块化设计形式。每个基本单元多可使用两个模块。
基本单元
基本单元分为三个型号:19" 机架型(3 个高度单位)、墙装外壳型和 Ex d 现场设备型。根据相应过程环境或过程控制系统,可使用附加的电子模块来调整基本单元中的通信接口。
模块
根据具体测量任务,可根据相应的分析或过程要求,通过安装可选择的模块来单独调整 SIPROCESS燝A700。
模块 | 测量任务 |
ULTRAMAT 7 | ULTRAMAT 7 模块用于高选择性测量红外活性组分,如一氧化碳、二氧化碳、一氧化氮、甲烷或二氧化硫。通常,其应用领域包括过程领域中使用的所有类型的排放测量。这些分析仪可用于控制生产过程和保证产品质量,即使存在高腐蚀性的气体时也如此。 |
OXYMAT 7 | OXYMAT 7 模块用于测量浓度介于 0 和 0.5% 之间的氧(小量程)以及浓度介于 0 和 之间的氧(大量程)。它适合在高 50 °C 的环境温度下使用,利用顺磁交变压力原理进行高精度测量。OXYMAT 7 模块具有模块化的设计,可与其它模块组合使用。 |
CALOMAT 7 | 适合通过测量导热率来测定数字混合物中氢气和惰性气体浓度。CALOMAT 7具有高动态测量范围(例如,0 ... 0.5% 和 0 ... H2,可设置)以及较短的 T90 时间。 |
现场控制单元
批准将防爆等级为 Ex-d 且具有防爆外壳的现场控制单元用于区域 1(ATEX/IECEx 认证)。与 OXYMAT 7 分析仪模块一起使用时,该现场控制单元可用于测量易燃或不的样气含量。
系列 6 / ULTRAMAT 23
系列 6 和 ULTRAMAT 23 是西门子的传统分析仪,已在范围内的客户当中应用很多年。
ULTRAMAT 6
可以用于测量红外线激活成分的高选择性测量,如测量 CO, CO2, NO, SO2, NH3, H2O, CH4 和其它碳氢化合物。ULTRAMAT 6 是一款 19 英寸形式的分析仪,外壳十分坚固,适合在恶劣环境中使用。通常,其应用领域包括过程领域中使用的所有类型的排放测量。这些分析仪可用于控制生产过程和保证产品质量,即使存在高腐蚀性的气体时也如此。
ULTRAMAT 23
ULTRAMAT 23 是一种创新型多组分分析仪,可利用 NDIR 原理测量多三种对红外线敏感的气体。紫外分光光度计可用来测量浓度很低的 SO2 和 NO2。通过使用电化学氧传感器或按照顺磁原理(“哑铃型”)工作的测量槽,也可以测量氧气 (O2)。使用附加的电化学 H2S 测量槽时,可以在沼气应用中进行测量。
ULTRAMAT/OXYMAT 6
用于在复杂应用中对红外线激活成分和样气进行组合测量。
OXYMAT 6
用于在复杂应用中根据顺磁性原理测量氧气浓度。OXYMAT 6 可按照顺磁交变压力原理来测量氧气。这种测量可保证线性度,并能在一个装置中使用 0-0.5% 的超低量程(检测限为 50 vpm)、多可达0-* 甚至 99.5-* 。
气路中所采用的材料允许分析仪测量腐蚀性混合气体。检测器单元不与样气接触,从而可在恶劣环境中使用,同时保证较长使用寿命。
OXYMAT 61
用于在标准应用中根据顺磁性原理测量氧气浓度。环境空气可用作 OXYMAT 61 的参比气体。空气是由集成在分析仪外壳内的一个泵提供的。
OXYMAT 64
用于通过 ZrO2 传感器测定跟踪范围内的氧气浓度。OXYMAT 64 可用于测量浓度极低的氧浓度,测量的浓度可低至 0-10 vpm 量程。在空气分离系统中,这种测量能力尤其令人感兴趣。根据具体应用,可以选择催化惰性 ZrO2 传感器或催化活性 ZrO2 传感器。
CALOMAT 6
适合通过测量导热率来测定数字混合物中氢气和惰性气体浓度。CALOMAT 6 具有高动态测量范围(例如,0 … 1% 和 0 … * H2,可设置)以及较短的 T90 时间。
CALOMAT 62
CALOMAT 62 是一种专门针对含有腐蚀性气体的应用设计的热导率分析仪。它可以直接测量 Cl2、HCl 和 NH3 等气体组分的浓度,并可以测量腐蚀性气氛中 H2 和 N2 等气体的浓度
plc梯形图控制程序与继电接触器控制电路虽然有相似之处,但却不是的一一对应关系。由于PLC的结构、工作原理与继电接触器控制电路的不同,因而梯形图控制程序与继电接触器控制电路两者之间又存在着一些差异。
(1) PLC采用梯形图编程是模拟继电接触器控制系统的表示方法,因而梯形图中各元器件也沿用了继电接触器控制系统中的叫法,称之为“(软)继电器”。但是梯形图中的“软继电器”并非真实的物理继电器,每个“软继电器”各自均为PLC存储器中的一个“位寄存器”,有两种相反状态,相应位的状态为“1”时表示该继电器线圈“得电”,状态为“0”时则表示该继电器线圈“失电”,因此称其为“软继电器”。用“继电器”表示PLC中的元器件就可以按继电接触器控制系统的形式来设计梯形图程序。
(2)梯形图程序中流过的“电流”也并非真实的物理电流,而是“能流”,它只能按“从左到右”、“从上到下”的规则流动。“能流”不允许倒流。“能流”到达则对应线圈得电接通。其实“能流”只是用户程序运算中满足输出执行条件时的形象表示方式而已。“能流”流向的规则是为了顺应PLC扫描是“从左到右”、“从上到下”的顺序进行而规定的。但是继电接触器控制系统中电流则是真实的物理电流,是可以用电流表测量出来的,其流动方向也是可以根据外加电源的实际情况自由流动。
(3)梯形图程序中的常开、常闭触点不是实际的物理触点。它们只是反映与现场物理开关的状态相对应的输入、输出映像寄存器或数据寄存器中的相应位的状态,在PLC中认为常开触点是对位寄存器状态进行“读取”操作,而常闭触点则是对位寄存器进行“取反”操作。
(4)梯形图程序中的线圈不是实际物理线圈,无法用它来直接驱动现场元件的执行机构。输出线圈中的状态会直接传输到输出映像寄存器的相应位中去,然后用该输出映像寄存器位中的状态“1”(高电平)或“0”(低电平)去控制输出电路中相应电路,并经功率放大之后去控制PLC的输出器件(继电器、晶体管或可控硅),进而使其触点通断来控制外部现场元件的执行机构。
(5)在编制梯形图程序时,PLC内部继电器的触点原则上可以无限次调用,因为存储单元中的位状态可重复读取;而继电接触器控制电路中的继电器触点数是由继电器的结构形式决定,因而也会随着结构形式的确定而固定下来,其数量是有限的。要特别强调的是,在PLC中一般情况下在同一梯形图程序中线圈通常只能调用一次,因此应尽量避免重复使用同一地址编号的线圈(重复线圈会导致输出结果的不确定性)。