当处理高盐废水时,蒸发法是有效地方法将盐分分离出来,可采用的蒸发形式包括多效蒸发和机械蒸汽再压缩蒸发工艺。但是当高盐废水中含有有机物时,势必对蒸发产生影响,这就考虑蒸发技术在整个高盐有机废水处理中的工艺组合方式。本文主要总结了蒸发技术与废盐资源化、废液焚烧、氧化、物化分离、分盐处理等技术组合来处理高盐有机废水。
1、蒸发+后处理技术
1.1 蒸发结晶+废盐资源化
当蒸发结晶技术直接用于高盐有机废水时,结晶出来的废盐含有一定量的有机物,需要按危废处理。国内废盐的处理方式一般为填埋处理,但此方法占用大量场地,而且还会对地下水资源和生态系统造成破坏;焚烧是一种可行的废盐处理技术,但焚烧过程中可能会存在无机盐熔融的问题,导致高温耐火材料无法使用,且产生的烟气内可能夹带熔融的无机盐会在后面的处理设备中冷却结晶,对后续设备运行造成影响。
废盐资源化是通过炭化深度去除有机物实现盐的无害化,再进一步开展资源化利用。炭化深度去除有机物的方法是热解。热解是一种在缺氧或无氧条件下的燃烧过程,是在低电极电位还原条件下的吸热分解反应,也称为干馏或炭化过程(煤气工程及焦化就是热解过程)。热解比焚烧的优点是,可以将废盐中的有机物转化为燃料气、燃料油等储存性能源;废盐中的硫、重金属等有害成分大部分被固定在炭黑中;而且缺氧分解下,排气量少,NOx的产生量也少,有利于减轻对大气环境的二次污染。
热解产物的产量及成分与热解原料成分、热解温度、加热速率和反应时间等参数有关。温度是热解过程重要的控制参数。在较低温度下,有机大分子裂解成较多的中小分子,油类含量较多;温度升高,中间产物发生二次裂解,C5以下分子及H2成分较多,气体产量成正比增长,各种酸、焦油、炭渣减少。另外,加热速率较低时热解产品气体含量高;提高加热速率,则产品中的水分及有机物液体的含量逐渐增多。反应时间长,转化率高,但处理能力降低,故应综合考虑。
热解方式的供热方式有两种,种是外部供给热解所需能量,热效率低;第二种内加热,通过供给适量空气使可燃物部分燃烧提供能量,热效率高,得到普遍应用。按热解炉的结构分为:流化床、回转窑、多段炉三种。废盐热解后,再经过除碳,就可以资源化利用,比如作为工业用盐(如建材添加剂)的生产原料,或者通过重结晶方式,得到所需要的盐类。
1.2 蒸发浓缩+废液焚烧
焚烧法是一种使有机废液实现减量化、无害化和资源化的处理技术。高盐有机废水的焚烧是将所有可燃或需要助燃的有机废液和废渣,在高温条件下,分解成无毒、无害的CO2、水等小分子物质,有机氮化物、有机硫化物、有机氯化物等被氧化成SOx、NOx、ClO-等酸性物质,但可以通过尾气吸收塔等净化处理,净化后的气体能够满足《大气污染物综合排放标准》。同时焚烧产生的热量可以回收或供热。
当高盐有机废水中的COD含量越高,其热值就越高,当废水焚烧时所外加的燃料就越少。假设烟气出口180℃,余热利用率65%时,当废水中COD为350g/kg时,就可以不用外加燃料。
在蒸发过程中,有机物浓度过高容易引起蒸发装置产生较多的泡沫,导致飞料产生,可投加消泡剂,稳定运行参数,避免飞料。
根据废液焚烧炉的炉体特征,应用广泛的废液焚烧炉可分为液体喷射型、流动床和回转窑三类。
2、预处理+蒸发结晶
2.1 氧化+蒸发结晶
采用氧化技术,将高盐有机废水中的有机物通过氧化将其氧化成二氧化碳和水或其它小分子化合物,接着再通过蒸发结晶技术将盐分分离出来。常用的氧化技术有湿式氧化、超临界水氧化、芬顿氧化等技术。
湿式氧化是在高温(150~350℃)高压(0.5~20MPa)的条件下,利用空气或氧气等作为氧化剂,将废水中的有机物氧化分解为无机物或小分子有机物的过程。为降低氧化反应的温度和压力,又有催化湿式氧化技术,包括同相催化湿式氧化和异相催化湿式氧化。
超临界水氧化是在超临界水中溶解的氧气与有机污染物发生化学反应,在超临界水氧化过程中,有机物、空气(或氧气)和水在24MPa左右的压力和400℃以上的温度完全混合,可以成为均一相,在这种条件下,有机物自发开始氧化反应,在绝热条件下,所产生的反应温度进一步提高,在一定的反应时间内,使99.9%以上的有机物被迅速氧化成简单的无毒小分子化合物,碳氢化合物被氧化成为CO2和水,含氮元素的有机物生成N2等无害物质,氯、硫等元素也被氧化,以无机盐的形式从超临界流体中沉积下来,超临界流体中的水成为清洁水。
芬顿试剂法是由芬顿试剂Fe2+和H2O2组成的混合体系,通过催化分解H2O2产生HO•来攻击有机物分子夺取氢,将大分子有机物降解成小分子有机物或CO2和H2O,或无机物。
2.2 物化分离+蒸发结晶
物化分离法是采用物理化学的方法将高盐有机废水中有机污染物从水中分离出来,不消耗过多的能量破坏其化学结构,主要方法有膜分离、萃取法、蒸馏法和吸附法等。
膜分离法是利用特殊的半透膜将废水分开,进而使某些溶质或水渗透出来的方法。对于高盐有机废水,常用反渗透和纳滤方式使其进一步浓缩,减少蒸发结晶的处理量。但有机物会对反渗透和纳滤膜造成有机物污染或生物污染,导致膜频繁清洗,降低在线率,膜寿命大大下降。对于高盐有机废水的膜浓缩的浓缩倍率,应对不同的浓缩倍率做投资和运行费用的运行的比较。随着浓缩倍率的提高,单位投资和运行成本快速上升,综合经济性接近热法工艺时,不宜继续采取膜浓缩。
萃取法是向高盐有机废水中加入适当的溶剂-萃取剂,作为有机废物的良好溶剂,使有机废物从高盐有机废水中分离出来的过程,萃取剂可在萃取过程中循环使用。例如用表面活性剂配置的乳化液系统可以萃取高浓度的含酚废水,并可以回收苯酚。
蒸馏是利用高盐有机废水中各组分物质间挥发度的差异,将有机污染物从废水中分离出来。精馏塔是精馏装置的主要设备,分离过程主要是在精馏塔内进行的。塔内装有若干块塔板或一定高度的填料。
吸附法主要用于难降解或难于氧化的溶解性有机物,如卤素、硝基取代的芳烃化合物、杂环化合物等,吸附剂以活性炭较为常见。当吸附过程达到平衡后,必须对其进行脱附再生,使其重复利用。通过加热可使吸附的有机物在高温下氧化和分解。
2.3 分盐技术
是否采取分盐技术要综合权衡投资和运行成本、结晶盐资源化率、结晶盐品质三者的关系。现在可行的分盐工艺有直接蒸发分盐、纳滤分盐、蒸发-冷冻分盐等工艺。
直接蒸发分盐工艺:根据氯化钠和硫酸钠在不同温度下溶解度的差异,结合相图,直接通过蒸发结晶方式,使大部分氯化钠和硫酸钠分别结晶出来,只剩余少量的母液结晶出混盐。热法分盐优势是工艺简单,运行可靠性强,投资和运行成本低,不足之处是结晶盐品质略低。
纳滤分盐工艺:通过纳滤装置调整浓盐水中氯离子和硫酸根离子的比例,再通过不同的蒸发结晶系统分别产出硫酸钠和氯化钠,减少混盐的产生。膜运行可靠性不如热法,分离效率随着运行时间延长逐渐降低。
蒸发-冷冻分盐工艺:将蒸发结晶和冷冻结晶技术有效结合,通过冷冻系统将浓盐水中的物质分离,提高产品盐的质量和提取率。但在冷法析硝时,只能结出十水硝,需要进一步热熔结晶才能得到无水硫酸钠。
在每种盐结晶的时候,为避免结晶器内的其它杂质影响结晶盐的品质,可在结晶器出口设置淘洗装置,降低结晶盐对有机物的携带量。通过淘洗装置,用低浓度进水对排盐逆流淘洗,洗脱结晶盐表面的高浓度母液,或者说采用低浓度进水替代髙浓度母液,从而使结晶盐携带的有机物含量大大降低。同时利用沉降速度差,沉降速度较快的NaCl和Na2SO4得以分离,轻质杂盐如CaSO4,CaF2,Mg(OH)2等被逆流淘洗液冲洗到结晶器循环系统,终通过母液排放除掉杂质。
3、结论
为促进蒸发技术在高盐有机废水处理中的应用,需要在预处理技术、蒸发结晶技术和后处理技术上开展技术研究。在预处理上,体现在氧化和物化分离上,减少有机物对盐蒸发的影响;在蒸发结晶技术本身上,有复杂多元高浓度盐水体系的结晶热力学和动力学研究,包括热力学平衡相图、结晶动力学、重金属和有机物变化等对结晶动力学影响规律;在后处理上,包括氯化钠和硫酸钠分质结晶技术以及回收盐的资源化利用技术。