汽车涂装废水主要是指来源于汽车零部件涂装工序所产生的综合废水,主要来源于涂装前处理工艺和涂装工序。其中涂装工序产生的废水含有的污染物主要有石油类、阴离子表面活性剂、悬浮物(SS)、磷酸根、Zn2+、Ni2+、Fe2+、NO-2、NO-3、颜料、粉剂、二甲苯等。此类废水化学需氧量(COD)一般较高,且可生化性差,处理难度较高。
混凝芬顿法是去除SS和难降解有机物较为理想的方法。混凝沉淀法通过胶体颗粒聚凝可以有效吸附废水中的悬浮物和有机污染物。芬顿氧化法是在酸性条件下,亚铁离子(Fe2+)催化双氧水(H2O2)产生强氧化性羟基自由基(•OH),迅速将废水中难降解的大分子有机物转化成易分解的小分子有机物,或者直接氧化成H2O和CO2,特别是对树脂、醛、硝基苯等物质有较好的去除效果。混凝芬顿法已经在焦化废水、苯胺废水等难降解废水处理中得到应用,但尚未有汽车涂装废水处理实际应用的研究。
本工作采用实际的涂装废水,探索适合此类废水的混凝剂种类以及使用条件,以及芬顿工艺的应用效果和影响因素,考察混凝芬顿法处理该类废水的可行性以及较优的工艺条件,为此类废水的处理提供参考。
1、试验
1.1 废水
本试验废水取自浙江某汽车零部件涂装企业车间倒槽期间排放的涂装废水,原水pH值在3.5左右,COD为2880mg/L。该废水需要处理达到GB8978-1996《污水综合排放标准》中COD≤500mg/L的三级标准才能排放。
1.2 混凝试验
研究5种混凝剂(聚合氯化铁PFC、聚硅酸硫酸铁PFSS、聚合氯化铝PAC、聚合氯化铝铁PAFC、聚硅酸铝PSAA)的混凝效果,采用混凝剂(2%)+聚丙烯酰胺PAM(0.1%),混凝剂与助凝剂PAM的质量比设置为50∶1。分别探究了pH值、混凝剂投加量对混凝沉淀的影响。每种混凝剂的投加量分别设为100,200,300,400,500,600,700mg/L,pH值分别设为5.0,6.0,7.0,8.0,9.0。
取200mL水样于250mL烧杯中,调整pH值,加入混凝剂,在250r/min的转速下搅拌2min,然后转速调至160r/min,再继续搅拌2min。在水样中分别投加相应量的PAM,调整转速至60r/min搅拌2min。停止搅拌,将水样静置沉淀,30min后取出上清液测COD。
1.3 芬顿试验
原水采用佳混凝沉淀试验条件下的出水,COD浓度为1050mg/L。探究芬顿氧化过程中H2O2的投加量以及H2O2与Fe2+比值、pH值、反应时间等条件对氧化效果的影响。H2O2的投加量设为2,4,6,8,10mL;H2O2与Fe2+的摩尔比分别设为2∶1、3∶1、4∶1;pH值分别设为2.0,2.5,3.0,3.5,4.0;反应时间分别设为30,50,70,100min。
由于加入催化剂和氧化剂之后水样的pH值会发生变化,因此投药方式设为先加入催化剂再加入氧化剂后调节pH值,取200mL水样于250mL烧杯中,加入FeSO4•7H2O,缓慢加入H2O2(5%),加入5%的H2SO4调节水样pH值,反应后,加入2.4%的NaOH调节pH值为10左右,搅拌反应,加入1mLPAC,加入0.5mLPAM,反应完全后静置沉淀15min,取上清液测COD值和残留H2O2的量。
1.4 测定方法
CODCr采用快速分光光度法测定;H2O2采用硫酸铈法测定。
2、结果与讨论
2.1 混凝
2.1.1 混凝剂投加量对混凝效果的影响
调节原水pH值为8.0,5种混凝剂不同投加量时对涂装废水中COD的去除效率见图1。由图1可得出:PAC投加量在300~500mg/L范围时,随着投加量的增加,COD去除效率越来越高,并在投加量为500mg/L时,COD去除率达到64.7%;PAFC、PFSS、PSAA、PFC投加量在300~400mg/L范围时,随着投加量的增加,COD去除效率越来越高,并在投加量为400mg/L时,COD去除率分别达到61.5%,59.9%,59.8%,63.9%,在投加量继续增加之后,COD的去除率都基本保持不变甚至略有下降。结果表明,混凝沉淀法对汽车涂装废水的去除有效,因为投加混凝剂后会形成带有正电荷的絮凝体,可中和磷化剂、脱脂剂、表面活性剂等污染物质的ζ电位,破坏水体中污染物形成的稳定体系;助凝剂PAM则通过吸附架桥、网捕、裹加作用来使水体中的污染物形成大的絮凝体从而形成沉淀,达到将污染物从水体中分离的目的。