产品包装行业也随之迅速发展,印刷制版、润版、印刷及清洗过程中,会产生油墨废水、高浓度的冲刷冲板水及乳白色的胶浆废水等不同类型的废水。此种类型废水水量小,COD浓度高、色度高、B/C比低、难生物降解,并伴有刺激性气味,同时废水随着生产间歇性排放,水质、水量变化较大。此类废水需得到有效处理后排放,若直接排放,对环境有着较大的影响。针对常州市某包装企业原污水处理系统出现的问题,进行水质分析、实验、工程改造设计、调试及运营工作,阐述此类污水处理采用的工艺、处理效果及调试运行基本参数,为类似废水处理提供参考。
1、工程概况
1.1 废水水质水量分析
本项目企业仅生产单一品种的彩盒,印刷过程中,印刷机自带油墨盒组、胶辊均无需进行清洗或擦拭。上光过程中,印刷机自带水性光油盒及上光过程胶辊也无需进行清洗或擦拭。本项目污水站处理废水主要为润版废水,覆膜工段自动覆膜机、贴击凸卡工段贴卡机、裱卡工段半自动裱卡机及组装过程中的胶辊、抹布、胶水盒的清洗废水及拖地废水。其中胶辊约每天清洗一次,设备自带胶水盒约半个月清洗一次。废水产生总量为4000t/a。污水站处理设计量为20t/d,废水主要来源于清洗过程中的胶浆废水,主要污染物为胶水颗粒。废水中还含有一部分的异丙醇、润版液等。企业废水水质如表1可知。
1.2 废水出水要求
本项目污水经污水站处理后接管进入当地污水处理厂进行处理,污水执行《污水排入城镇下水道水质标准》(GB/T31962-2015)中B等级标准和《油墨工业水污染物排放标准》(GB/T25463-2010),标准值见下表:
1.3 改造前污水处理工艺
改造前污水处理站进水经过调节池调节水量和水质后,进入生化系统。生化系统为传统的A2/O工艺,包括两段式厌氧、缺氧和两级好氧。生化处理后出水经混凝沉淀处理。混凝沉淀药剂为传统的PAC和PAM药剂。污水经处理后出水接管,污泥和混凝沉淀物则进入污泥浓缩池,浓缩后的沉淀物经板框压滤后脱水。脱水清液进入调节池,污泥作为危废外运处置。
改造前主要污水处理装置大小见表1。厌氧池为敞口池,搅拌污泥。厌氧池容积为12m3,有效容积在10m3左右,废水设计停留时间为12h,设计进水COD浓度为3000mg/L,实际进水COD为6000mg/L计算,厌氧COD容积负荷为由5kgCOD/m3*d上升至10kgCOD/m3*d。实际运行过程中,厌氧系统COD负荷高于设计。
除了厌氧系统外,生化系统缺氧池利用穿管曝气,容积为7.5m3。好氧池采用穿管曝气,容积大小为25m3。厌氧系统设计负荷为70%,生化缺氧和厌氧池的COD容积负荷分别为4.8kgCOD/m3*d和1.44kgCOD/m3*d。混凝沉淀系统,PAC池及PAM池容积分别为2.5m3,设计停留时间为2.5h。混凝后沉淀池表面积为3m2,设计表面负荷为0.5m3/m2*h。
1.4 改造前污水处理问题
本项目污水主要污染指标为COD。调试运行初期,出水达到接管标准。随着进水总量的增加,出水COD浓度升高,同时,生化处理系统污泥吸附大量的胶浆颗粒,泥水混合物为逐渐变成乳白色。污水处理构筑物池壁产生胶浆聚合固体,黏性很强。污水站生化处理系统随着运行时间的增长,处理效果不断下降。说明改造前污水站处理流程无法满足废水处理要求,本项目污水抑制生化系统活性污泥活性,影响生化系统处理效果。根据初期污水处理系统效果。说明生化系统可对污水中有机物有降解作用,本项目污水需经预处理后进入生化系统。
实际废水处理过程中,进水COD浓度高于设计值,系统厌氧池和缺氧池的COD负荷较高,较难达到设计处理效果,出水无法达到出水要求。污水站处理流程及建构筑物大小均需进行改造,污水处理的运行参数还需进一步确定。
系统生化处理系统,缺少污泥沉淀池,泥水混合物直接进入混凝沉淀池,加药后沉淀后清液排放,导致部分活性污泥在沉淀过程中,失去活性,污泥大量流失,从而生化处理效果达不到设计要求。
2、废水混凝沉淀实验结果
为了降低废水中胶浆颗粒对污水处理站生化的影响,根据孙琳等的研究结果,进行混凝沉淀预处理试验。混凝剂为三氯化铁,助凝剂采用PAM,通过投加碱,保证混凝反应池废水pH条件。研究不同三氯化铁投加量对混凝效果的影响。表4为不同混凝剂投加胶浆颗粒的沉淀效果及原水COD的去除效果。
本项目进水COD浓度为7130mg/L,混凝沉淀对废水中COD去除效果达到70%。混凝剂投加量在0.5%左右。经过混凝沉淀后,废水中的胶浆颗粒达到去除的效果,不会影响后续污水生化处理效果。
3、污水站改造方案
3.1 污水处理流程改造
根据实验结果,增设混凝沉淀系统作为废水预处理系统,避免废水中的胶浆颗粒对生化污泥有影响,同时,结合系统原有生化系统,废水的处理流程见图2。根据现场实际情况,将系统原有的生化处理系统后的混凝沉淀池作为污泥沉淀池,此部分污泥回流至厌氧池。达到污泥回流,**氮磷的去除率的效果,同时,避免污泥局部堆积和流失的现象。
3.2 污水处理设备改造
由于本项目系统进水COD高于设计值,生化系统负荷较高。但是经过预处理后,生化进水COD浓度降低,本项目实验结果表明,生化进水COD浓度为2500mg/L。但是本项目废水水质变化幅度,进水COD高可达到15000mg/L,为避免废水COD浓度变化对生化系统有一定的影响,生化系统进水COD设计浓度为6000mg/L。
在设备改造方面,增设1台厌氧罐,碳钢+防腐的结构,大小为Φ4*5m,有效容积60m3,厌氧系统COD负荷为2kgCOD/m3*d。同时将现有厌氧池作为缺氧池使用,缺氧池的COD容积负荷为0.6kgCOD/m3*d,好氧池的COD容积负荷为0.25kgCOD/m3*d。
3.3 污水处理仪表改造
(1)进水系统增设电磁**计,确定进水**;增设管道过滤器,避免废水中的胶浆颗粒结块,对水泵运行影响。
(2)混凝沉淀系统设置pH计,调节混凝沉淀系统废水酸碱性,不仅保证废水混凝沉淀效果,同时还需控制pH值,避免对厌氧系统的影响。
(3)在好氧池增设DO和pH在线监测仪,通过曝气阀门控制好氧系统的溶解氧,通过污泥回**控制好氧系统的pH值,控制硝化菌的生长环境,达到生化系统稳定的效果。