DDR概述
如今,存储器件在计算机、汽车与消费电子产品上可谓无所不在。其中 DDR SDRAM(双数据率同步动态随机存取存储器)是常用的存储器设计技术之一,而随着该技术的发展,其传输速率在日益加快,功耗在日益降低。
传输速度加快使得此类存储器的验证难度呈指数上升。存储系统要准确工作,其信号完整性必须满足某种要求。因为信号完整性对系统互通性而言非常关键,或者说只有保持信号完整性才能保证不同厂商生产的器件在一起使用时能够很好地结合。信号完整性问题会引发包括时序冲突、协议背离、时钟抖动以及由其他总线引发的错误等其它问题。本文介绍了DDR信号的测量方法,DDR信号验证中面临的挑战,并针对其调试方法给出了相关建议。文中提到的方法适用于DDR、DDR2、 DDR3 和 SDRAM这一类全缓冲的DIMM系统调试。为简单起见,这些内存技术在下文中统称为DDR。
2.测量方法
JEDEC规范定义了 DRAM的引脚或球必须满足的电气与定时方面的要求。一些较新的DDR DRAM采用了精细球栅阵列(FBGA)封装,此封装下的焊接球很难接触。因此,我们建议测量时,探头应尽可能接近DRAM的球状焊点。通常,我们可以在与焊接球相连的过孔上或与其相连的电阻靠近DRAM一侧的焊盘上测量。
目前的差分有源电压探头能在探头顶端容性负载低于0.22pF的情况下达到高达13GHz的测量带宽。此类工具对DDR信号(通常为单端信号)的影响非常小,很适合DDR测量,强烈建议大家使用。由于DDR信号对噪声非常敏感,因此建议在测量此类信号时采用带宽足够大的示波器,以避免示波器的噪声影响测量。有些示波器具备带宽压缩功能,能调节至恰好适合测量的带宽,以实现**和可重复的测量。图1所示为13 GHz差分有源探头连接到DDR2 DIMM的过孔上的情形。