HZB12-70J海志蓄电池12V73AH参数规格
电解液的加入:
由于特别的生产工艺及品检程序在加酸过程中的应用,确保了每个电池的电解液加到了饱和量,电池的设计与制造使电池在寿命期内无须加入任何电解液。
AGM电池结构如图所示,正负极板栅是由铅、钙、锡合金浇铸而成。电池活性物质是由高纯度(99.9999%)的铅制成的,这些铅已将杂质含量控制到小,而这些杂质是导致极板被腐蚀和产生自放电的主要原因。
电池隔板是由超细玻璃纤维制成,具有完全的耐酸性能,能充当海棉一样的吸酸能力,使电解液在电池内不具有流动性,并在放电过程中需要酸时,保持足够酸的供应量。“S”形包板方法的应用,有助于减少由于电池底部枝晶或铅粒造成的短路问题。
隔板的用途在于保持正、负极板之间一定的距离,并完全消除了在活性物质同电解液发生化学反应时而产生短路的可能。另外,隔板具有开口结构的特点,这种结构使其在加酸时对电解液的流动具有很小的阻力。
安全排气阀:
压力将由电池内部产生,但安全阀具有良好的排气功能,在压力达到一定值时安全阀会自动开启排气,并在压力释放后自动重新关闭。
安全阀开启的大压力为2Psi(14KPA),封闭值为1.2Psi(8.4KPA)。
尽量不接电感性负载。因为电感性负载的启动电流往往会超过额定电流的3~4倍,这样就会引起UPS电源的瞬时超载,影响UPS电源的寿命。电感性负载包括夏天常用的电风扇、冰箱 等。
不宜满载或过度轻载。不要按照UPS电源的额定功率去使用它,不要认为空着的接口不应该闲着而连接其他电器,长期满载状态将直接影响UPS电源寿命。一般情况下,在线式UPS电源的负载量应该控制在70%~80%,而后备式的UPS电源的负载量应该控制在60%~70%。注意,过度轻载也不好,虽然不如过载那么严重。
板栅铸造简介
板栅是活性物质的载体,也是导电的集流体。普通开口蓄电池板栅一般用铅锑合金铸造,免维护蓄电池板栅一般用低锑合金或铅钙合金铸造,而密封阀控铅酸蓄电池板栅一般用铅钙合金铸造。
一步:根据电池类型确定合金铅型号放入铅炉内加热熔化,达到工艺要求后将铅液铸入金属模具内,冷却后出模经过修整码放。
二步:修整后的板栅经过一定的时效后即可转入下道工序。板栅主要控制参数:板栅质量;板栅厚度;板栅完整程度;板栅几何尺寸等;
铅粉制造简介
铅粉制造有岛津法和巴顿法,其结果均是将1#电解铅加工成符合蓄电池生产工艺要求的铅粉。铅粉的主要成份是氧化铅和金属铅,铅粉的质量与所制造的质量有非常密切的关系。在我国多用岛津法生产铅粉,而在欧美多用巴顿法生产铅粉。
岛津法生产铅粉过程简述如下:
一步:将化验合格的电解铅经过铸造或其他方法加工成一定尺寸的铅球或铅段;
二步:将铅球或铅段放入铅粉机内,铅球或铅段经过氧化生成氧化铅;
三步:将铅粉放入指定的容器或储粉仓,经过2-3天时效,化验合格后即可使用。
铅粉主要控制参数:氧化度;视密度;吸水量;颗粒度等;5、极板制造简介
极板是蓄电池的核心部分,其质量直接影响着蓄电池各种性能指标。涂膏式极板生产过程简述如下:
一步:将化验合格的铅粉、稀硫酸、添加剂用专用设备和制成铅膏;
二步:将铅膏用涂片机或手工填涂到板栅上;
三步:将填涂后的极板进行固化、干燥,即得到生极板。
生极板主要控制参数:铅膏配方;视密度;含酸量;投膏量;厚度;游离铅含量;水份含量等。
对于我们在长期使用的UPS电源,到底UPS电源会产生哪些谐波呢,目前所产生的谐波到底会有哪些危害了,具体的危害给大家讲讲:
1、对断路器、漏电保护器、继电器等保护、自控装置产生干扰,造成误动作。使电动机产生附加损耗和发热、产生脉动转矩和噪音。使电力变压、使电动机产生附加损耗和发热、产生脉动转矩和噪音。
2、造成电流表、电压表、功率表、电能表测量误差。使照明设施寿命缩短。
3、对临近的通讯线路产生静电干扰和电磁干扰。引起配电系统静电补偿电容器发生串/并联谐振。
4、使配电线路损耗增大、发热、缩短绝缘寿命,甚至引起短路、火灾。
5、由于谐波,使电压突变造成电子设备损坏、出现误动作,影响计算机程序正常运行。造成数据丢失,甚至损坏硬件,引起楼宇自动化、消防报警系统、安全防范系统误动作,甚至无法工作。
为什么高型电池好采用卧放,低型电池好采用竖放?
答:高型电池竖放易导致电池内部电解液分层,放置时间久后,上层的硫酸密度变稀,下层硫酸密度变浓,从而形成浓差微电池,长期如此导致电池自放电严重,缩短电池使用寿命。
低型电池电解液分层的可能性小得多,而采用竖放将有效地减少电池漏液的可能,因此矮型电池宜选择坚立放置。