调节池分为并列两格池体,钢筋混凝土结构,停留时间3h。由于来水可生化性较差,故本项目调节池调匀方式采用潜水搅拌机。本项目由于来水为经自身污水处理站处理的尾水,故取消了格栅设计,采用了提篮格栅,只去除大颗粒物质,保证提升泵的正常运行。
(2)絮凝沉淀池。
设置两列絮凝反应池,钢筋混凝土结构。分为混合段、絮凝段和助凝反应段,停留时间分别为2min、15min、15min。沉淀池采用平流沉淀池,水力停留时间为2h,主要作用为去除可能带入的悬浮物。
(3)水解酸化池。
水解酸化池采用复合型ABR折流板形式,在上向流区放置填料,以拦截并贮存在高负荷条件下因大量产气的剧烈混合带出的污泥,强化污泥截留能力,并促进微生物与废水的充分接触、传质,保证处理效果。在填料底部设置进水区,防止填料堵塞。出水区设置出水堰防止发生短流。水解酸化池采用钢筋混凝土结构,水力停留时间12h。
在所选用的有机废水中,有机悬浮物含量极高,部分粒径较大的悬浮物可以直接通过肉眼进行观察,而在实验当中,实验环境需要保证一定的COD负荷,因此需要通过混凝处理实验对所选用的废水进行预处理,从而对有机废水内部所存在的有毒物质和微生物进行一定程度的抑制,终使后续处理当中的生化池工序降低负担。通过混凝实验和生物实验,共同构成混凝生物的强化处理。具体来说,混凝实验由于主要的目的是降低COD负载,去除掉有机废水当中悬浮的有机颗粒物,因此本文结合相关的化学经验,选用了聚合氯化铝作为整个实验的混凝剂材料,而选用了聚丙烯酰胺作为助凝剂。通过对pH值的考察,设定了混凝剂的投加量。在本文中,有机废水的pH值较高,为强碱性液体,其水力条件所表现出的振动强度极高,因此本文通过L16的正交实验,对混凝处理工艺进行了充分优化。混凝正交实验将实验过程分为了十六个步骤,并根据具体的影响因素,将影响因素分为甲乙丙丁四个种类,并形成4*16的实验矩阵[1]。通过实验步骤与实验的影响因素的数值意义对应,获取混凝实验在不同因素作用下的浊度去除效率以及COD去除效率,增强混凝实验的真实性。
1.3 活性污泥耐盐驯化
在完成了混凝实验的设计之后,本文进行了混凝生物的强化联合驯化设计。系统通过进水方式在生化池中进行处理,通过无机盐的MS培养基进行混合。在设计时,笔者选用了间歇式方式进行有机废水的进水,以十二个小时为一个进水周期,其中八个小时进行系统的曝气,曝气的主要目的是为了对DO溶解氧进行合理的控制,使其能够保持在每升4毫克的比例之内。剩余的四个小时作为闲置时期,其中排除的上清液占据总体比例的一半,随后检验COD的具体浓度。在整个测试的过程中,MS培养基需要在原废水混凝后加入无机盐来形成。在完成混凝后,水中的COD浓度为每升550毫克左右,培养基则需要经过NH4CL、K2HPO、CuSO4、H3BO、MnCl·4H2O、ZnSO4等进行混合,按照一定比例进行详细配置。在完成配置后,需要按照五个梯度依次进行等体积的CL离子溶液的添加,并设置五天为一个驯化期,进行每个梯度的驯化。在梯度驯化过程中,每一次梯度,都需要进行每升1克的CL离子溶液的添加。随着有机废水的氯离子浓度逐渐提高,可以对COD的去除率进行重新确定,一般来说,当氯离子达到每升10克以后,COD的稳定去除率约为80%,既可以认定为污泥耐盐驯化已经完成。
完成耐盐驯化之后,有机废水需要流入到生化池中进行生物处理。生物处理实验主要由两个圆柱形的反应器来完成。两个圆柱形的反应器为体积相同溶剂相同的特制反应池,其中一个反应器为处理样本,不进行任何嗜盐菌的投加,而另一个反应器则需要投加一定数量的嗜盐菌,由于嗜盐菌每升含量约为0.3克,因此需要加入原始体积10%的符合嗜盐菌株菌悬液,用以进行与个反应器的对比查看[2]。两个反应器的有效工作体积为2升,进行处理的有机废水为完成混凝和污泥驯化的,具有每升550毫克进水COD浓度的基本特性。通过在不同盐度之下进行对比观察,能够对有机废水所处的各个梯度时所具有的氯离子浓度进行掌握。经过计算,有机废水在梯度时,氯离子的浓度为每升12克,此后的四次梯度,均以上升3克的趋势进行增长。其中每个梯度的监测时间设置为240个小时,并且对COD含量,污泥沉降情况、混合液挥发性悬浮固体、污泥容积指数等相关数据进行定期取样测定,从而保证实验的准确性。
2、集成处理工艺设计