产地 : | 北京 | 适用范围 : | 结构植筋 |
材质 : | 环氧树脂 | 规格 : | 45KG/组 |
功能 : | 植筋锚固 | 品牌 : | 博瑞双杰 |
国内外碳纤维生产现状及发展趋势
碳纤维是纤维状的碳素材料,含碳量在90%以上。它是利用各种含碳的有机纤维在惰性气体中、高温状态下碳化而制得的较高纯度碳链。碳纤维具有十分优异的力学性能,是目前已大量生产的高性能纤维中具有高的比强度和高的比模量的纤维,特别是在2000℃以上的高温惰性环境中,碳材料是唯一强度不下降的物质,是其他主要结构材料(金属及其合金)所无法比拟的。碳纤维呈黑色,坚硬,具有强度高、重量轻等特点,是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度是钢的7.9倍,抗拉弹性模量高于钢。除了优异的力学性能外,碳纤维还兼具其他多种优良性能,如低密度、耐高温、耐腐蚀、耐摩擦、抗疲劳、震动衰减性高、电及热传导性高、热膨胀系数低、X光穿透性高,非磁体但有电磁屏蔽性等。
我国自20世纪60年**始碳纤维研究开发至今已有近40年的历史,但进展缓慢,同时由于发达国家对我国几十年的技术封锁,至今没能实现大规模工业化生产,工业及民用领域的需求长期依赖进口,严重影响了我国高技术的发展,尤其制约了航空航天及国防事业的发展,与我国的经济社会发展进程极不相称。所以,研制生产高性能、高质量的碳纤维,以满足和民用产品的需求,扭转大量进口的局面,是*前我国碳纤维工业发展的迫切任务。
一、生产方法
目前,工业化生产碳纤维按原料路线可分为聚丙烯腈(PAN)基碳纤维、沥青基碳纤维和粘胶基碳纤维三大类。碳纤维生产就是不断除去杂质元素(主要为H对梁、板正弯矩区进行受弯加固时,碳纤维布宜延伸至支座边缘。在集中荷载作用点两侧宜设置构造的碳纤维布U型箍或横向压条。针对本次试验中的试验梁,由于试验梁多在靠近加载点处最先发生破坏,建议在靠近加载点处纯弯段内设置两附加U型箍;在剪力和弯矩较大处及有突变处设置U型箍;U型箍应在粘结延伸长度范围均匀设置,U型箍净间距不大于梁高的1/4,高度不小于梁高的1/2,每道U型箍量不小于梁底CFRP加固量的1/2;U型箍宽度在100衄以上。、N、O、K、Na),减少缺陷,净化、重整碳链的过程。从粘胶纤维制取高力学性能的碳纤维必须经高温拉伸石墨化,碳化收率低,技术难度大、设备复杂,成本较高,产品主要为耐烧蚀材料及隔热材料所用;由沥青制取碳纤维,原料来源丰富,碳化收率高,但因原料调制处理复杂、产品性能较低,亦未得到大规模发展;由聚丙烯腈纤维原丝可制得高性能的碳纤维,其生产工艺较其它方法简单,胶层一混凝土界面粘结失效导致的剥离破坏。多数试件的破坏形式属于这种类型。加载到后期裂缝开始分叉并出现微小的脆响声,继续加载后在某一处胶层界面可以观察到有裂缝开展,逐渐向两边开展,有的裂缝甚至越过了在靠近加载点处的U型箍。加载到一定程度后出现一声较大的响声,裂缝有较大的发展。当达到80%极限荷载后继续加载,弯曲裂缝有两端窄中间宽的发展趋势,保护层混凝土自受拉纵筋处起从主缝分又出从属裂缝。最后,伴随一声爆响,碳纤维布被拉断,碳纤维布和混凝土粘结在一起,甚至将整个混凝土保护层都扯下来,露出受力钢筋。B13梁、B14梁和BII2梁的破坏属于这种形式。而且产品的力学性能优良,用途广泛,因而自20世纪60年代问世以来,取得了长足的发展,成为*今碳纤维工业生产的主流。
与聚丙烯腈基碳纤维相比,沥青基碳纤维发展相对滞后。1987年9月日本三菱、旭化成建成了年产500t高性能沥青基碳纤维装置,这标志着沥青基碳纤维已处于工业化过渡的新阶段。沥青基碳纤维的炭化收率比聚丙烯腈基高,原料沥青价格也远比聚丙烯腈便宜,在理论上这些差别将使沥青基碳纤维的成本比聚丙烯腈基碳纤维低。然而要制得高性能碳纤维,原料沥青中的杂质等必须完全脱除,沥青转化为中间相沥青,这使得高性能沥青基碳纤维的成本大大增加。实际上高性能沥青基碳纤维的成本反而比聚丙烯腈基碳纤维高。故目前锥形破坏:在植筋深度小于等于最小植筋深度时,植筋在拉应力作用下,植筋胶与钢筋的由于钢筋含有杂质及铜筋成分的不均匀性、周围混凝土提供的化学物理环境的不均匀性,都会使钢筋各部位的电生授电位不同而形成腐蚀电池,因此,第一个条件总是满足的。空气中的氧气和水分很容易通过混凝土中實通的孔隙与徴製绝进入到朝筋表面,以満足锈性反立所需的水和氧。粘结完好、钢筋强度未达到或刚刚达到屈服阶段未超过极限拉应力,基体材料超过其极限拉应力,此时就会发生锥形体破坏。当在强度较低的基材上植筋,锥形体破坏是一种很容易发生的破坏形式。于只追求性能而不计成本的极少数如宇航部门使用。
聚丙烯腈基碳纤维的生产主要包括原丝生产和原丝碳化两个过程。原丝生产过程主要包括聚合、脱泡、计量、喷丝、牵引、水洗、上油、烘干收丝等工序骨料必须坚硬、致密、高强、耐久、无裂缝,骨料中不应含有大量的粘土、淤泥、粉屑、有机物和其它有害杂质,其含量不应超过有关技术规范的规定,这些杂质不仅妨碍水泥与骨料的粘结以及水泥的水化作用,还影响混凝土的抗压强度、和易性以及干缩等性质,尤其是对混凝土抗拉强度影响显著。如含泥量和泥块含量增加1%.2%,混凝土的抗拉强度降低10%.25%,将严重影响混凝土质量。。碳化过程主要包括放丝、预氧化、低温碳化、高温碳化、表面处理、上浆烘干、收丝卷绕等工序。在生产聚丙烯腈(PAN)基碳纤维的时候,被称为“母体”的聚丙烯腈纤维首先要通过聚合和纺纱,然后将这些母体放入氧化炉中在200到300摄氏度进行氧化。另外,还要在碳化炉中,在温度为1000到2000摄氏度间进行碳化制成碳纤维。
尽管碳纤维生产流程相对较短,但生产壁垒很高,其中碳纤维原丝的生产壁垒是难中之难,具体表现在碳纤维原丝的喷丝工艺、聚丙烯腈聚合工艺、丙烯腈与溶剂及引发剂的配比等。目前世界碳纤维技术主要掌握在日本的东丽公司、东邦Tenax集团和三菱人造丝集团,这三家企业技术严格保密,工艺难以外露,而其他碳纤维企业均是处于成长阶段,生产工艺在摸索中不断完善。
注射式植筋胶