半导体XRD测试——广东省科学院半导体研究所是广东省科学院下属骨干研究院所之一,主要聚焦半导体产业发展的应用技术研究,兼顾重大技术应用的基础研究,从事电子信息、半导体领域应用基础性、关键共性技术研究,XRD倒易空间(RSM)电话,以及行业应用技术开发。
X射线衍射技术(XRD技术)在电池领域的应用
原位XRD技术研究材料在不同电压下的相变
原位XRD技术是分析正负极材料相变变化的有力工具。实验中我们采用NCM材料做阴极,用石墨做阳极材料,XRD倒易空间(RSM)机构,做成电芯进行原位XRD测试,将电芯逐渐从3.0V充电到4.5V,每隔一段电压扫描一次。XRD测试采用Malvern Panalytical公司生产的X Pert PRO X射线衍射仪,实验结果如下图所示:
从图二图三可以看出,随着充电电压的升高,正极材料NCM的(003)峰开始向低角度偏移,此时NCM的(003)晶面间距增大,即c轴变大,当电压达到4.0V时达到低值,随后随电压升高又向高角度偏移;与之相对应,(110)峰随电压升高向高角度偏移,XRD倒易空间(RSM)哪家好,中间没有反弹趋势,说明(110)晶面间距减小,对应着a轴一直变小。当电压大于4.4V后,003峰峰强变低,并开始宽化,说明此时晶体结构开始严重变形,晶胞中原子不能很好的规整排列,达到材料极限承受电压。
另外,材料充放电过程中的结构稳定性及相变过程对其电化学性能,特别是循环稳定性有着重要影响。通过分析可得到晶胞参数在充放电过程中的变化图,从而评估不同的正极材料引起的锂离子电池体积膨胀,为锂离子电池的安全研究、材料选取提供可行数据和分析手段。
欢迎来电咨询科学院半导体研究所了解更多信息~
半导体XRD测试——广东省科学院半导体研究所是广东省科学院下属骨干研究院所之一,主要聚焦半导体产业发展的应用技术研究,兼顾重大技术应用的基础研究,从事电子信息、半导体领域应用基础性、关键共性技术研究,以及行业应用技术开发。
Scherrer公式
基本原理:当X 射线入射到小晶体时,其衍射线条将变得弥散而宽化,晶体的晶粒越小, X射线衍射谱带的宽化程度就越大i。Sherrer公式描述的就是晶粒尺寸与衍射峰半峰宽之间的关系。
利用该方程计算平均晶粒度需要注意:
β为半峰宽度,西藏自治XRD倒易空间(RSM),即衍射强度为极大值一半处的宽度,单位以弧度表示。
Dhkl只代表晶面法线方向的晶粒大小,与其他方向的晶粒大小无关。
k为形状因子,对球状粒子k=1.075,立方晶体k=0.9,一般要求不高时就取k=1。
测定范围3~200nm。
欢迎来电咨询科学院半导体研究所了解更多信息~
半导体XRD测试——广东省科学院半导体研究所是广东省科学院下属骨干研究院所之一,主要聚焦半导体产业发展的应用技术研究,兼顾重大技术应用的基础研究,从事电子信息、半导体领域应用基础性、关键共性技术研究,以及行业应用技术开发。
X 射线衍射是通过 X 射线在样品中的衍射现象,利用衍射峰的位置和强度,来定性分析材料的结晶类型、晶体参数、晶体缺陷、不同结构相的含量等。对于应用于储能、催化等领域的材料而言,其晶体结构往往会随着反应的进行发生演变,而非原位XRD只能检测到某―状态下材料晶体结构的转变,很难准确得到关于材料在整个转变过程中的相关信息,尤其是关于电极材料相变和结构演变的研究。为重要的是,整个过程存在因电极材料暴露于空气中,而破坏掉真实状态的风险,非原位XRD测试往往不能很好地还原电池材料在充放电过程中的真实状况。原位XRD作为一种XRD的衍生测试手段,可以很好的解决非原位XRD测试过程中的诸多问题。
原位XRD技术早就已运用到材料科学研究中,主要用于对物质的组成和结构进行鉴定和研究:
(1)原位XRD在材料反应过程中得到实时的结构变化信息,可以深入的认识材料在充放电过程中发生的反应,对如何进一步改进材料具有重要的指导意义;
(2)原位XRD的测试可以在短时间内得到大量可对比信息,由于原位XRD技术在测试的整个过程中是针对同一材料的相同位置进行测试,因而通过该测试手段所得到的信息(晶胞参数、峰强度等参数)具有相对可比性,可以得到一系列实时的结构变化信息。
欢迎来电咨询科学院半导体研究所了解更多信息~
半导体单晶XRD靠谱-XRD倒易空间(RSM)电话由广东省科学院半导体研究所提供。半导体单晶XRD靠谱-XRD倒易空间(RSM)电话是广东省科学院半导体研究所今年新升级推出的,以上图片仅供参考,请您拨打本页面或图片上的联系电话,索取联系人:王小姐。