6SL3040-0PA01-0AA0详细说明
TSI系统(汽轮机状态监视和保护系统)和ETS系统(汽轮机危机跳闸系统)是火力发电厂保证汽轮机和发电机正常运转的重要设备,在火力发电企业运用十分普遍。在当前的大部分应用中,这两套系统是互相独立的,一般由专业的TSI设备供应商提供TSI系统,而ETS系统则用通用的PLC来构建。但事实上两套系统之间存在着很多联系,TSI系统的输出往往是ETS系统的输入。如果能使两套系统有机融合,不仅可以节省成本,更可以使系统结构简化,从而提高可靠性。
针对以上情况,我公司选用科威公司的ESAY嵌入式PLC芯片构建了ETS系统的核心控制模块,通过CAN现场总线与我公司的现场总线TSI系统实现有机融合,相当完美地解决了当前ETS系统存在的诸多问题。
一、总体设计
EASY 嵌入式PLC 芯片有两个uart串口和一个CAN接口以及32个IO引脚。该芯片的CAN接口已经加载科威公司的CAN应用层协议,这是一个主从式的协议,通讯速率160K。我公司的TSI系统使用的MVCAN-2 CAN应用层协议是一个多主结构的协议,通讯速率可以是10K、125K、250K和500K。由于协议不同,TSI系统并不能直接使用EASY 嵌入式PLC 芯片的CAN接口与其通讯。为解决这个问题,将ETS控制模块设计成双CPU结构。使用8位MCU P89V51RD2和独立CAN控制器SJA1000扩展出另一个CAN通讯口,在该通讯口加载MVCAN-2协议,实现与TSI系统的连接。P89V51RD2和EASY 嵌入式PLC 芯片之间通过两片IDT7202交换数据。IDT7202是一种双端口的FIFO(先入先出)缓冲器,内部有1024×9位FIFO RAM。
二、硬件实现
P89V51RD2通过地址、数据和写信号线连接到其中一片IDT7202的写入端口,并通过地址、数据和读信号线连接到另一片IDT7202的读出端口;嵌入式PLC 芯片只有通用IO引脚,没有地址、数据和读写信号线,只能用通用IO来模拟读写操作。具体做法是将嵌入式PLC 芯片的P1口当作1个8位数据端口分别与两个IDT7202的另一组读取和写入端口连接,P3.0、P3.1、P3.2用作读、写、使能信号,P4.0、P4.1、P4.2用作状态判断信号。用嵌入式PLC 芯片的P2口扩展了8个继电器输出,嵌入式PLC 芯片的其它接口和特性均按典型应用进行设计。将P89V51RD2的uart串口设计为rs232标准串口,该串口在设置时用于下载TSI系统的配置文件,运行时加载MODBUS协议用于与上位机或其它设备通信。*后完成的ETS控制器具有以下功能:八路继电器输出,1个CAN接口与TSI系统互联,另一个CAN接口可用于IO扩展和ETS控制器间互联,COM1串口用于梯形图下载和PLC监控,COM2用于CAN组态和PLC通讯,COM3(由P89V51RD2扩展)用于TSI配置下载和TSI数据监控。
三、软件实现
软件由两部分组成。一部分是运行于P89V51RD2中的软件,另一部分是嵌入到嵌入式PLC芯片中的软件。
运行于P89V51RD2中的软件使用C语言编写。软件被设计为两种工作模式:设置模式和工作模式。在设置模式下,用户使用PC通过串口将TSI系统的配置文件传递给P89V51RD2,P89V51RD2将文件存储于内部FLASH中;在工作模式下,P89V51RD2按照配置文件解析由SJA1000接收到的TSI系统数据,并将数据按照一定格式通过IDT7202传输给嵌入式PLC。同时,由嵌入式PLC通过IDT7202发来的数据经解析后通过SJA1000发送到TSI系统。
嵌入到嵌入式PLC芯片中的软件基于科威公司提供的汇编语言框架编写。首先解决使用通用IO来模拟IDT7202的读写操作,以下是读写IDT7202的程序:
FIFO_FF EQU P4.1
FIFO_EF EQU P4.0
C1_DIR EQU P3.3
C1_EN EQU P3.2
C1_WR EQU P3.1
C1_RD EQU P3.0
FIFO_PORT EQU P1
WRITE_FIFO: MOV SFRPAGE,#0FH
JNB FIFO_FF,WFIFO_L1
CLR C1_DIR
MOV FIFO_PORT,R7
CLR C1_EN
CLR C1_WR
SETB C1_WR
SETB C1_EN
MOV R6,#1
RET
WFIFO_L1: MOV R6,#0
RET
READ_FIFO: MOV SFRPAGE,#0FH
JNB FIFO_EF,RFIFO_L1
SETB C1_DIR
CLR C1_EN
CLR C1_RD
MOV FIFO_PORT,#0FFH
MOV A,FIFO_PORT
SETB C1_RD
SETB C1_EN
MOV R6,A
MOV R7,#1
RET
RFIFO_L1: MOV R7,#0
RET
在嵌入式PLC的STEP函数和SCAN函数中读取IDT7202的数据,每次读取两帧。数据解析后存入对应的D寄存器,这样就可以在梯形图编程中使用这些数据。有一部分数据是可写的(即允许由PLC向TSI方向传递)。对这部分数据,在PLC的外部RAM开辟一块内存作为数据副本,初始化时将D寄存器与副本置为相同值,在运行中于STEP函数和SCAN函数中监视D寄存器和副本的值是否相同,若不同则将D寄存器值向P89V51RD2发送。
四、总结
基于EASY 嵌入式PLC 芯片构建的现场总线ETS控制器目前已经在工业现场得到实际运用,总的情况良好。应该说EASY 嵌入式PLC 芯片是一款成功的产品
摘要:
新的基于现场总线技术的控制策略和网络结构将对现有的仪表及控制系统产生革命性的影响。从现场总线技术的本质特征上分析了其对传统分散控制系统DCS的冲击,并结合DCS的网络结构特点,给出了现场总线集成于DCS的3种实现方法。
工业控制从早期的就地控制、集中控制,已经发展到现在的集散控制(DCS),在过去的20年中,过程工业对DCS系统及相关的仪表装置进行了大量的投入,DCS系统的应用结果得到了用户的肯定。4-20mA信号是DCS系统及现场设备相互连接的*本质特点,这是控制系统和仪表装置发展的一大进步。
然而现在,数字化和网络化成为当今控制网络发展的主要方向。人们意识到传统的模拟信号只能提供原始的测量和控制信息,而智能变送器在4-20mA信号之上附加信息的能力又受其低通信速率的制约,所以对整个过程控制系统的机制进行数字化和网络化,应是其发展的必然趋势。
现场总线在智能现场设备、自动化系统之间提供了一个全数字化的、双向的、多节点的通信链接。现场总线的出现促进了现场设备的数字化和网络化,并且使现场控制的功能更加强大。这一改进带来了过程控制系统的开放性,使系统成为具有测量、控制、执行和—过程诊断的综合能力的控制网络。
1 现场总线对传统DCS的冲击
现场总线对传统DCS的冲击来源于其本质上优越于DCS系统的技术特征。根据国际电工委员会IEC和现场总线基金会FF的定义,现场总线技术具有以下5个主要特点:
①数字信号完全取代4-20mA模拟信号;
②使基本过程控制、报警和计算功能等完全分布在现场完成;
③使设备增加非控制信息,如自诊断信息、组态信息以及补偿信息等;
④实现现场管理和控制的统一;
⑤真正实现系统开放性、互操作性。
现场总线技术不仅是一种通信技术,它实际上融人了智能化仪表、计算机网络和开放系统互连(OSI)等技术的精粹。所有这些特点使得以现场总线技术为基础的现场总线控制系统(FCS)相对于传统DCS系统具有巨大的优越性:
①系统结构大大简化,成本显著降低;
②现场设备自治性加强,系统性能全面提高;
③提高了信号传输的可靠性和精度;
④真正实现全分散、全数字化的控制网络;
⑤用户始终拥有系统集成权。
这些优越性可从DCS和现场总线系统的网络结构比较后得到验证。
2 现场总线集成于DCS系统是现阶段控制网络的发展趋势
尽管用户对控制系统的结构改进表示欢迎,但他们并不希望对他们现有的仪表系统做大的改动
串行通信是指 使用一条数据线,将数据一位一位地依次传输,每一位数据占据一个固定的时间长度。其只需要少数几条线就可以在系统间交换信息,特别使用于计算机与计算机、计算机与外设之间的远距离通信。
终端与其他设备(例如其他终端、计算机和外部设备)通过数据传输进行通信。数据传输可以通过两种方式进行:并行通信和串行通信。
在计算机和终端之间的数据传输通常是靠电缆或信道上的电流或电压变化实现的。如果一组数据的各数据位在多条线上同时被传输,这种传输方式称为并行通信。
并行通信时数据的各个位同时传送,可以字或字节为单位并行进行。并行通信速度快,但用的通信线多、成本高,故不宜进行远距离通信。计算机或各种内部总线就是以并行方式传送数据的。另外,在plc底板上,各种模块之间通过底板总线交换数据也以并行方式进行。
并行通信传输中有多个数据位,同时在两个设备之间传输。发送设备将这些数据位通过 对应的数据线传送给接收设备,还可附加一位数据校验位。接收设备可同时接收到这些数据,不需要做任何变换就可直接使用。并行方式主要用于近距离通信。计算 机内的总线结构就是并行通信的例子。这种方法的优点是传输速度快,处理简单。
串行数据传输时,数据是一位一位地在通信线上传输的,先由具有几位总线的计算机内的发送设备,将几位并行数据经并--串转换硬件转换成串行方式,再逐位经 传输线到达接收站的设备中,并在接收端将数据从串行方式重新转换成并行方式,以供接收方使用。串行数据传输的速度要比并行传输慢得多,但对于覆盖面极其广 阔的公用电话系统来说具有更大的现实意义。
串行的方向性结构有三种,即单工、半双工和全双工。