西门子模块6ES7307-1BA01-0AA0

西门子模块6ES7307-1BA01-0AA0

发布商家
浔之漫智控技术-西门子PLC代理商
联系人
聂航(先生)
电话
15221406036
手机
15221406036
微信
15221406036
价格
¥666.00/件

西门子模块6ES7307-1BA01-0AA0

双极性的驱动电路如图所示,它会使用八颗晶体管来驱动两组相位。双极性驱动电路可以同时驱动四线式或六线式步进电机,虽然四线式电机只能使用双极性驱动电路,它却能大幅降低量产型应用的成本。双极性步进电机驱动电路的晶体管数目是单极性驱动电路的两倍,其中四颗下端晶体管通常是由微控制器直接驱动,上端晶体管则需要成本较高的上端驱动电路。双极性驱动电路的晶体管只需承受电机电压,所以它不像单极性驱动电路一样需要箝位电路。

步进不能直接接到工频交流或直流上工作,而必须使用专用的步进电动机驱动器,如图2所示,它由脉冲发生控制单元、功率驱动单元、保护单元等组成。图中点划线所包围的二个单元可以用微机控制来实现。驱动单元与步进电动机直接耦合,也可理解成步进电动机微机控制器的功率接口,这里予以简单介绍。

图2 步进电动机驱动控制器

1. 单电压功率驱动接口

实用电路如图3所示。在电机绕组回路中串有电阻rs,使电机回路时间常数减小,高频时电机能产生较大的电磁转矩,还能缓解电机的低频共振现象,但它引起附加的损耗。一般情况下,简单单电压驱动线路中,rs是不可缺少的。rs对步进电动机单步响应的改善如图3(b)。{{分页}}

图3 单电压功率驱动接口及单步响应曲线

图4 双电压功率驱动接口

2.双电压功率驱动接口

双电压驱动的功率接口如图4所示。双电压驱动的基本思路是在较低(低频段)用较低的电压ul驱动,而在高速(高频段)时用较高的电压uh驱动。这种功率接口需要两个控制信号,uh为高压有效控制信号,u为脉冲调宽驱动控制信号。图中,功率管th和dl构成电源转换电路。当uh低电平,th关断,dl正偏置,低电压ul对绕组供电。反之uh高电平,th导通,dl反偏,高电压uh对绕组供电。这种电路可使电机在高频段也有较大出力,而静止锁定时功耗减小。

3.高低压功率驱动接口

图5 高低压功率驱动接口

高低压功率驱动接口如图5所示。高低压驱动的设计思想是,不论电机工作频率如何,均利用高电压uh供电来提高导通相绕组的电流前沿,而在前沿过后,用低电压ul来维持绕组的电流。这一作用同样改善了驱动器的高频性能,而且不必再串联电阻rs,消除了附加损耗。高低压驱动功率接口也有两个输入控制信号uh和ul,它们应保持同步,且前沿在同一时刻跳变,如图5所示。图中,高压管vth的导通时间tl不能太大,也不能太小,太大时,电机电流过载;太小时,动态性能改善不明显。一般可取1~3ms。(当这个数值与电机的时间常数相当时比较合适)。{{分页}}

4.斩波恒流功率驱动接口

恒流驱动的设计思想是,设法使导通相绕组的电流不论在锁定、低频、高频工作时均保持固定数值。使电机具有恒转矩输出特性。这是目前使用较多、效果较好的一种功率接口。图6是斩波恒流功率接口原理图。图中r是一个用于电流采样的小阻值电阻,称为采样电阻。当电流不大时,vt1和vt2同时受控于走步脉冲,当电流超过恒流给定的数值,vt2被封锁,电源u被切除。由于电机绕组具有较大电感,此时靠二极管vd续流,维持绕组电流,电机靠消耗电感中的磁场能量产生出力。此时电流将按指数曲线衰减,同样电流采样值将减小。当电流小于恒流给定的数值,vt2导通,电源再次接通。如此反复,电机绕组电流就稳定在由给定电平所决定的数值上,形成小小的锯齿波,如图6所示。

图6 斩波恒流功率驱动接口

斩波恒流功率驱动接口也有两个输入控制信号,其中u1是数字脉冲,u2是模拟信号。这种功率接口的特点是:高频响应大大提高,接近恒转矩输出特性,共振现象消除,但线路较复杂。目前已有相应的集成功率模块可供采用。

5.升频升压功率驱动接口

为了进一步提高驱动系统的高频响应,可采用升频升压功率驱动接口。这种接口对绕组提供的电压与电机的运行频率成线性关系。它的主回路实际上是一个开关稳压电源,利用频率-电压变换器,将驱动脉冲的频率转换成直流电平,并用此电平去控制开关稳压电源的输入,这就构成了具有频率反馈的功率驱动接口。

6.集成功率驱动接口

目前已有多种用于小功率步进电动机的集成功率驱动接口电路可供选用。

l298芯片是一种h桥式驱动器,它设计成接受标准ttl逻辑电平信号,可用来驱动电感性负载。h桥可承受46v电压,相电流高达2.5a。l298(或xq298,sgs298)的逻辑电路使用5v电源,功放级使用5~46v电压,下桥发射极均单独引出,以便接入电流取样电阻。l298(等)采用15脚双列直插小瓦数式封装,工业品等级。它的内部结构如图7所示。h桥驱动的主要特点是能够对电机绕组进行正、反两个方向通电。l298特别适用于对二相或四相步进电动机的驱动。{{分页}}

图7 l298原理框图

与l298类似的电路还有ter公司的3717,它是单h桥电路。sgs公司的sg3635则是单桥臂电路,ir公司的ir2130则是三相桥电路,allegro公司则有a2916、a3953等小功率驱动模块。

图8是使用l297(环形分配器专用芯片)和l298构成的具有恒流斩波功能的步进电动机驱动系统。

机床的驱动电机包括进给和主轴伺服电机两类。商在选购电机时担心切削力不够,往往选择较大规格的马达,这不但会增加机床的制造成本,而且使之体积增大,其结构布局不紧凑。因此,一定要通过具体的分析计算,选择**规格的电机。 进给驱动伺服电机的选择1、原则上应该根据负载条件来选择伺服电机。在电机轴上所加的负载有两种,即阻尼转矩和惯量负载。这两种负载都要正确地计算,其值应满足下列条件:1) 当机床作空载运行时,在整个速度范围内,加在伺服电机轴上的负载转矩应在电机连续额定转矩范围内,即应在转矩—速度特性曲线的连续工作区。2) *大负载转矩,加载周期以及过载时间都在提供的特性曲线的准许范围以内。3) 电机在加速/减速过程中的转矩应在加减速区(或间断工作区)之内。4) 对要求频繁起,制动以及周期性变化的负载,必须检查它的在一个周期中的转矩均方根值。并应小于电机的连续额定转矩。加在电机轴上的负载惯量大小对电机的灵敏度和整个伺服系统的精度将产生影响。通常,当负载小于电机转子惯量时,上述影响不大。但当负载惯量达到甚至超过转子惯量的5倍时,会使灵敏度和响应时间受到很大的影响。甚至会使伺服放大器不能在正常调节范围内工作。所以对这类惯量应避免使用。推荐对伺服电机惯量jm和负载惯量jl之间的关系:

1<=jl/jm<52、负载转矩的计算方法 加到伺服电机轴上的负载转矩计算公式,因机械而异。但不论何种机械,都应计算出折算到电机轴上的负载转矩。通常,折算到伺服电机轴上的负载转矩可由下列公式计算:tl=(f*l/2πμ)+t0式中:tl—折算到电机轴上的负载转矩(n。m); f—轴向移动工作台时所需要的力 l—电机轴每转的机械位移量(m) to—滚珠丝杠螺母,轴承部分摩擦转矩折算到伺服电机轴上的值(n。m) μ—驱动系统的效率 f取决于工作台的重量,摩擦系数,水平或垂直方向的切削力,是否使用了平衡块(用在垂直轴)。如果是水平方向,f轴的值由上图例给出。无切削时: f=μ*(w+fg)切削时: f=fc+μ*(w+fg+fcf)

w:滑块的重量(工作台与工件)kg μ:摩擦系数 fc:切削力的反作用力 fg:用镶条固紧力

fcf:由于切削力靠在滑块表面作用在工作台上的力(kg)即工作台压向导轨的正向压力。计算转矩时下列几点应特别注意。(a)由于镶条产生的摩擦转矩必须充分地考虑。通常,仅仅从滑块的重量和摩擦系数来计算的转矩很小的。情特别注意由于镶条加紧以及滑块表面的精度误差所产生的力矩。(b)由于轴承,螺母的预加载,以及丝杠的预紧力滚珠接触面的摩擦等所产生的转矩均不能忽略。尤其是小型轻重量的设备。这样的转矩响应乡整个转矩。所以要特别注意。(c)切削力的反作用力会使工作台的摩擦增加,以此承受切削反作用力的点与承受驱动力的点通常是分离的。如图所示,在承受大的切削反作用力的瞬间,滑块表面的负载也增加。当计算切削期间的转矩时,由于这一载荷尔引起的摩擦转矩的增加应给予考虑。

(d)摩擦转矩受进给速率的影响很大,必须研究测量因速度工作台支撑物(滑块,滚珠,浄压力),滑块表面材料及润滑条件的改变而引起的摩擦的变化。已得出正确的数值。(e)通常,即使在同一台的机械上,随调整条件,周围温度,或润滑条件等因素而变化。当计算负载转矩时,请尽量借助测量同种机械上而积累的参数,来得到正确的数据。3、负载惯量的计算 由电机驱动的所有运动部件,无论旋转运动的部件,还是直线运动的部件,都成为电机的负载惯量。电机轴上的负载总惯量可以通过计算各个被驱动的部件的惯量,并按一定的规律将其相加得到。1) 圆柱体惯量 如滚珠丝杠,齿轮等围绕其中心轴旋转时的惯量可按下面公式计算: j=(πγ/32)*d4l (kg cm2)如机构为钢材,则可按下面公式计算;

j=(0.78*10-6)*d4l (kg cm2)式中; γ—材料的密度(kg/cm2) d—圆柱体的直经(cm) l—圆柱体的长度(cm)2) 轴向移动物体的惯量 工件,工作台等轴向移动物体的惯量,可由下面公式得出:j=w*(l/2π)2 (kg cm2)式中; w—直线移动物体的重量(kg) l—电机每转在直线方向移动的距离 (cm)3) 圆柱体围绕中心运动时的惯量如图所示:

属于这种情况的例子; 如大直经的齿轮,为了减少惯量,往往在圆盘上挖出分布均匀的孔这时的惯量可以这样计算; j=jo+w*r2(kg cm2)式中; jo—为圆柱体围绕其中心线旋转时的惯量(kgcm2) w—圆柱体的重量(kg) r—旋转半径(cm)4) 相对电机轴机械变速的惯量计算 将上图所示的负载惯量jo折算到电机轴上的计算方法如下: j=(n1/n2)2jo式中: n1 n2为齿轮的齿数4、电机加速或减速时的转矩 1) 按线性加减速时加速转矩计算如下:ta=(2πvm/60*104) *1/ta(jm+jl)(1-e-ks。ta)vr=vm{1-1/ta。ks(1-e-ksta)ta—加速转矩(n.m)vm—快速移动时的电机转速(r/min)ta—加速时间(sec)jm—电机惯量(n.m.s2)jl—负载惯量(n.m.s2)vr—加速转矩开始减少的点ks—伺服系统位置环增益(sec-1)电机按指数曲线加速时的加速转矩曲线如下图:此时,速度为零的转矩to可由下面公式的出。to==(2πvm/60*104) *1/te(jm+jl)te—指数曲线加减速时间常数2) 当输入阶跃性速度指令时,他的速度曲线与转矩曲线如图所示这时的加速转矩ta相当于to 可由下面公式求得(ts=ks) ta==(2πvm/60*104) *1/ts(jm+jl)5、工作机械频繁激活,制动时所需转矩 当工作机械作频繁激活,制动时,必须检查电机是否过热,为此 须计算在一个周期内电机转矩的均方根值,并且应使此均方根值小于电机的连续转矩。电机的均方根值;trms=√[(ta+tf)2t1+tf2t2+(ta-tf)2t1+to2t3]/t周式中; ta—加速转矩(n.m) tf—摩擦转矩(n.m) to—在停止期间的转矩(n.m)t1t2t3t周 所知的时间可参见图所示6、负载周期性变化的转矩计算 如图所示也需要计算出一个周期中的转矩均方根值trms。且该值小于额定转矩。这样电机才不会过热,正常工作。


人气
63
发布时间
2023-04-26 11:52
所属行业
PLC
编号
31510749
我公司的其他供应信息
相关西门子模块产品
拨打电话
微信咨询
请卖家联系我