西门子CPU模块6ES7312-5BF04-0AB0

西门子CPU模块6ES7312-5BF04-0AB0

发布商家
浔之漫智控技术-西门子PLC代理商
联系人
聂航(先生)
电话
15221406036
手机
15221406036
微信
15221406036
价格
¥666.00/件

基于PCC的软件框架设计 

系统软件采用模块式编程,软件部分主要由“PT界面设计”、“主从通讯”、“变频器控制”、 “伺服电机控制”及“张力调节” 等模块组成。这里主要介绍张力调节模块的设计。 

4.1 PCC控制的软件框架 

开关量和4个伺服的控制程序及驱动程序等在PCC中编写。PCC的软件框架图如图4.1所示。

newmaker.com 
图4.1 PCC的软件框架图

4.2 PCC的软件框架 

上导伺服5和4个变频器的控制程序放在PCC中编写。PCC的软件框架图如图4.2所示。

newmaker.com 
图4.2 PCC的软件框架图

4.3张力调节模块设计 

由于伺服控制系统不仅能控制速度,还能控制位置,与变频调速相比,伺服控制更**、可靠。所以本设计中张力调节控制采用的是伺服控制系统,其控制软件采用PCC的内置PID调节 。 

4.3.1 PID控制系统框图 

PID调节器由比例调节器(P),积分调节器(I)和微分调节器(D)构成,图4.3所示为PID控制系统框图。

newmaker.com 
图4.3 PID控制系统框图

图中R为设定的期望值,Y为控制变量,S为实际输出值,e为控制偏差值(e=R-S)。 

工作原理:直接采用PCC里面具备的PID指令编程模块,从模拟量输入通道获取指定的张力信号--->AD--->张力数字量--->进入PID模块,按照设定参数(比例系数、微分时间、积分时间等)通过PID计算---->调整后的张力值,将运算结果放到输出通道。通过公式转换计算出调整后的频率值。 

4.3.2 PID控制算法 

PID控制是根据给定值R(t)与实际输出值S(t)之间的偏差e(t)来进行控制的。将偏差的比例 (P),积分(I),和微分(D)通过线性组合构成控制量,对受控对象进行控制 。 

PID控制算法的基本运算式如下: 

newmaker.com

将各变量用数字量表示,公式如下: 

newmaker.com

在张力控制中,综合考虑PCC的运算速度和伺服控制系统转速以及控制精度的要求,采样周期设为200ms。 

式中SK为第K次伺服电机输出脉冲频率,控制伺服电机的速度。SK-1 为上一次脉冲输出频率值。 

△ek为实际输出的脉冲数和应该要输出的脉冲数之差。 
△ek= ek- ek-1为第K次采样所获得的偏差数。 
△ek-1= ek-1- ek-2为第K-1次采样所获得的偏差数。 
Kp,Ki,Kd分别为比例系数、积分系数、微分系数。 

实际调试过程可对Kp,Ki,Kd进行调试,选定合理的值,保证偏差控制在合理的范围之内。 

4.3.3 张力控制程序流程图 

张力控制程序流程图如图4.4所示。

newmaker.com 
图4.4 张力控制程序流程图

首先张力传感器的值被传送到PCC的模拟输入通道,通过模拟量转换为数字量,之后可以先进行张力预紧,使运行前各张力达到设定值的70%左右,以免全机启动后张力立即松掉。 

全机启动后,伺服和变频控制系统由0开始加速运转,进行加速过程中张力的实时控制。在加速15s后系统进入匀速运转阶段,此时,加速张力控制关闭,开启匀速状态张力控制来实现匀速状态下张力的实时控制。在匀速状态改变设定值,就进入加速或减速状态,时间为5s。张力控制采用传统的PID控制。全机停止时,开启减速张力控制,直到机器停止。 

5 结束语 

本设计主要从控制系统工作原理、硬件结构及软件模块设计等方面探讨了磨毛整理机电控系统。采用PCC作为核心控制单元,将导布系统用伺服控制系统代替变频控制系统后,使磨毛机运行过程中各张力值更加稳定。实现了技术突破,大大提高了生产效率和系统稳定性。织物经磨毛机加工后,手感柔软滑爽,绒毛短匀,有的织物可达到观之无毛摸之柔爽的效果,极大的提高了织物的附加值。 


注塑机是注塑成型的主设备,注塑机的技术参和性能与塑料性质和注塑成型工艺有着密切的关系。注塑成型设备的进一步完善和发展必将推动注塑成型技术的进步,为注塑制品的开发和应用创造条件[1]。老式中小型注塑机的电气控制系统大多采用继电器控制,线路复杂,故障率高,维修麻烦。而可编程序控制器是专为工业环境下应用而设计的工业计算机,由于它具有可靠性高、编程方便、抗干扰能力强、维修方便等特点,广泛用于各种类型的机械或生产过程的控制[2]。 

2 注塑机的工作原理
 

注塑机是借助螺杆(或柱塞)的推力,将已塑化好的熔融状态(即粘流态)的塑料注射入闭合好的模腔内,经固化定型后取得制品的工艺过程。注塑机操作项目包括控制键盘操作、电器控制柜操作和液压系统操作三个方面。分别进行注射过程动作、加料动作、注射压力、注射速度、顶出型式的选择,料筒各段温度及电流、电压的监控,注射压力和背压压力的调节等。注塑机生产一个产品的工作循环包括(1)快速合模;(2)慢速合模;(3)模板锁合;(4)射台前移到位;(5)注塑;(6)冷却和保压;(7)预塑;(8)射台后退;(9)开模;(10)顶出制品。工艺流程如图1所示。

newmaker.com 
图1 注塑机工艺流程

注塑机在操作过程中需要实现手动控制、半自动控制和全自动控制。手动控制是在一个生产周期中,每一个动作都是由操作者拨动操作开关,控制相应的电磁铁得电而实现液压系统的控制。手动操作一般在试机调模时才选用。注塑机运行通常工作在半自动或全自动状态。半自动操作时,机器可以自动完成一个工作周期的动作,但每一个生产周期完毕后,操作者必须拉开安全门,取下工件,再关上安全门,机器方可以继续下一个周期的生产。如果顶出装置能将工件可靠地从模具中顶出,注塑机可以工作于全自动状态。全自动操作时注塑机在完成一个工作周期的动作后,可自动进入下一个工作周期,因而生产效率更高。 

3 plc控制系统开发
 

3.1 输入输出点数的确定
 

m230注塑机生产工艺要求有多种操作方式转换,并以行程控制和时间控制来实现动作的转换等特点,其控制是典型的顺序控制,适合选择采用可编程序控制器实现注塑机的各个工步的控制。在选择可编程序控制器时,需要知道系统开关信号的输入点数和输出点数。本控制系统的输入设备有启动按钮sb1、停止按钮sb2,限位开关sq1~sq12,半自动需要检测安全门限位开关sa4。工作方式的选择对应**转换开关sa1~sa3输入,加上控制面板上的12个控制按钮,需要输入点数30个。输出需要控制21个开关电磁阀,实现快速合模、慢速合模、锁模等注塑机的15个状态控制,需输出点数21个。
 

3.2 plc选型
 

本系统选用三菱公司的fx-2系列的fx2-64mr。该型号的plc具有丰富的指令系统,快速的输入响应功能以及完善的脉冲输出功能,为64点i/o型,其中输入点数为32点,输出点数为32点,继电器型,可直接驱动开关电磁阀,满足系统要求[3]。
 

3.3 plc输入输出接线图设计
 

本系统设计有启动按钮sb1、停止按钮sb2,限位开关sq1~sq12,半自动需要控制安全门开关sa4,工作方式选择的**转换开关sa1~sa3,以及控制面板上的12个控制按钮。输出需要21个电磁阀来控制15个状态。输入信号分别接到fx2的x接线端,控制输出分别接到输出接线端,系统输入输出接线如图2所示。

newmaker.com 
图2 plc输入输出接线图

3.4 梯形图设计 

注塑机的控制是典型的顺序控制,它的工作循环是从慢速合模工步开始,一步一步有条不紊进行,每一个工步执行都使相应电磁阀动作,用行程开关或定时器定时来判断每一步是否完成,并决定是否启动下一个工步,采用步进梯形指令可以方便地完成相应的控制过程。本系统的设计有手动、半自动和全自动多种工作方式,因而采用条件控制指令来实现工作方式的选择。半自动与全自动的控制程序基本相同,手动控制是将控制面板上的闭模、锁模(芯移入)、射台前进、注射、保压、预塑、抽胶、射台退回、芯移出、开模、顶出的12个控制按钮接入plc,将**转换开关打到手动档,x15接通,中间继电器m300得电,启动后进入手动控制子程序。全自动时,安全们不用打开,注塑机自动完成闭模、锁模(芯移入)、射台前进、注射、保压、预塑、抽胶、射台退回、芯移出、开模、顶出等过程。半自动时主要是防止顶出动作完成后,产品不能自动从模具中脱离,应此在开模时需要打开安全门,人工取下产品,然后关闭安全门,开始下一个产品生产周期,比全自动多了打开安全门和关闭安全门的动作。全自动控制部分梯形图如图3所示。
 

图3所示的全自动控制程序采用步进梯形指令,注塑机每一个工步与一条set指令对应,设计方便,易于实现。

newmaker.com 
图3 全自动控制梯形图

4 结束语 

本设计针对m230型注塑机,根据其工艺流程,使用三菱公司的fx2可编程序控制器作为注塑机的核心控制部件,实现了注塑机系统的全自动控制、半自动控制和手动控制过程,实际系统运行表明,设计的系统操作简便,运行可靠


人气
62
发布时间
2023-04-28 15:27
所属行业
PLC
编号
31526976
我公司的其他供应信息
相关西门子产品
15221406036 请卖家联系我