西门子PLC卡件6ES7313-6BG04-0AB0
通过 PROFIBUS DP 进行过程通信
SIMATIC S7-1500 通过通信处理器或通过配备集成 PROFIBUS DP 接口的 CPU 连接到 PROFIBUS DP 总线系统。通过带有 PROFIBUS DP 接口的 CPU 或通讯模块,可构建一个高速的分布式自动化系统,并且使得操作大大简化。
从用户的角度来看,PROFIBUS DP 上的分布式I/O处理与集中式I/O处理没有区别(相同的组态,编址及编程)。
以下设备可作为主站连接:
SIMATIC S7-1500
(通过带 PROFIBUS DP 接口或 PROFIBUS DP 通信模块的 CPU)SIMATIC S7-300
(使用带 PROFIBUS DP 接口的 CPU 或 PROFIBUS DP CP)SIMATIC S7-400
(使用带 PROFIBUS DP 接口的 CPU 或 PROFIBUS DP CP)SIMATIC S5-115U/H、S5-135U 和 S5-155U/H,带 IM 308
SIMATIC 505
以下设备可作为普通从站或智能从站来连接:
分布式 I/O 设备,例如 ET 200
现场设备
SIMATIC S7-200、S7-1200、S7-300
C7-633/P DP, C7-633 DP, C7-634/P DP, C7-634 DP, C7-626 DP
SIMATIC S7-400(仅通过 CP 443-5)
SIMATIC S7-1500(只能通过 CP/CM 1542-5)
不过,安装有 STEP 7 的编程器/PC 或 SIMATIC HMI 面板仅使用部分通过 PROFIBUS DP 运行的 PG
PC与PLC功能分配
在等离子熔射过程中,环境恶劣,噪音等污染严重,干扰强,系统工作周期长。因此现场设备控制核心采用西门子S7-300型PLC,充分利用该型PLC可靠性和良好的抗干扰能力来保证系统可靠性。并配备了A/D、D/A模块和CP5611通讯卡,可以实现模拟量采样与输出和与上位机之间通讯。同时PLC系统还配备了西门子稳压电源,保证了系统运行稳定性,避免与整个系统共用电源产生干扰。
由于PLC无法进行监控图表显示、图像处理和复杂算法设计,操作人员也不能直观了解现场状况。为了弥补以上不足,系统增加PC进行现场监控与数据运算,其主要任务是获取机器人状态信息和皮膜温度采样信息,根据设定工艺优化算法执行结果进行实时熔射路径调节;对等离子射流检测图像进行处理,反馈调节信息至PLC实现对等离子射流发生装置调控;同时能对系统故障做出及时报警,并能采取相应应急处理措施和加工现场断点保护等。
3 控制系统软件设计
3.1 控制软件设计
控制软件系统主要功能包括:参数设定、过程监控、工艺优化、故障信息处理与报表系统等。这些部分相互结合,实现对整个等离子熔射过程状态和实时现场数据监控、系统故障报警和相应处理、熔射主要工艺参数记录和报表打印输出功能等。
3.2 OPC客户端程序设计
OPC规范定义了一个工业标准接口,这个标准使得COM技术适用于过程控制和制造自动化等应用领域。OPC是以OLE/COM机制作为应用程序的通讯标准。OLE/COM是一种客户/服务器模式,具有语言无关性、代码重用性、易于集成性等优点。OPC规范了接口函数,不管现场设备以何种形式存在,客户都以统一的方式去访问,从而保证软件对客户的透明性,使得用户*从低层开发中脱离出来。
OPC客户端软件设计流程如图2所示,其客户端程序开发目的是基于OPC协议实现计算机与PLC之间通讯,通过PC机直接读写PLC中变量,提高数据访问速度,保证熔射工艺优化算法的运算结果及时传送到PLC现场控制设备中,实现整个系统实时控制,从而能够充分地利用计算机数据处理能力和丰富的软件资源。
图2 OPC客户端程序设计流程图
3.3 PLC运行程序设计
等离子熔射系统由西门子S7-300型PLC作为现场设备控制核心,实现对现场设备控制,整个工艺过程动作控制和现场数据采样。PLC内部程序分为手动控制和自动运行两个部分,可分别响应控制面板上按钮动作和上位机发来的控制指令。
PLC程序采用Step7进行设计,主要过程包括:首先在Step7中建立一个新工程SprayControl,然后插入SIMATIC 300 Station,根据PLC硬件配置及模板物理安装位置进行硬件组态。其次插入Simatic PC Station,在其中插入OPC Server和CP5611。在OPC Server的Connections中基于MPI网络建立PC Station与Simatic 300 Station之间网络连接。MPI网络建立成功后,可以在OPC Server中Symbols列表中看到PLC中CPU单元内设计的所有的数字量、模拟量和数据块等各种变量。基于MPI方式进行组网后的网络连接图如图3所示。后基于SimaticNet软件建立名称Spray的OPC服务器,这样就可以通过OPC客户端程序访问PLC中变量。
图3 基于MPI方式组网的网络连接图
PLC中运行程序集中在S7 Program中Blocks里,主要模块包括系统主控模块OB1,负责调用其他功能块等。然后分别设计针对送粉器控制、工作转台控制、机器人故障处理、系统故障处理等功能块,供主控块调用。为了确保PLC程序安全执行,必须增加对象块OB80、OB82、OB85分别实现对模板诊断错误和超时错误处理,OB121和OB122响应同步错误。设计过程中可以按照变量分类或者针对某一功能块设计数据块,将控制系统中的变量统一分组管理
S7-300型号及对应描述:
电机的功率,应根据生产机械所需要的功率来选择,尽量使电机在额定负载下运行。选择时应注意以下两点: ①如果电机功率选得过小.就会出现“小马拉大车”现象,造成电机长期过载.使其绝缘因发热而损坏.甚至电机被烧毁。 ②如果电机功率选得过大.就会出现“大马拉小车”现象.其输出机械功率不能得到充分利用,功率因数和效率都不高,不但对用户和电网不利。而且还会造成电能浪费。 要正确选择电机的功率,必须经过以下计算或比较: P=F*V/1000(P=计算功率KW,F=所需拉力N,工作机线速度M/S) 对于恒定负载连续工作方式,可按下式计算所需电机的功率: P1(kw):P=P/n1n2 式中n1为生产机械的效率;n2为电动机的效率,即传动效率。 按上式求出的功率P1,不一定与产品功率相同。因此.所选电机的额定功率应等于或稍大于计算所得的功率。 此外.*常用的是类比法来选择电动机的功率。所谓类比法。就是与类似生产机械所用电机的功率进行对比。 具体做法是:了解本单位或附近其他单位的类似生产机械使用多大功率的电机,然后选用相近功率的电机进行试车。试车的目的是验证所选电机与生产机械是否匹配。 验证的方法是:使电机带动生产机械运转,用钳形电流表测量电动机的工作电流,将测得的电流与该电机铭牌上标出的额定电流进行对比。如果电机的实际工作电流与铭脾上标出的额定电流上下相差不大.则表明所选电动机的功率合适。如果电机的实际工作电流比铭牌上标出的额定电流低70%左右.则表明电机的功率选得过大,应调换功率较小的电机。如果测得的电机工作电流比铭牌上标出的额定电流大40%以上.则表明电机的功率选得过小,应调换功率较大的电机。 实际上应该是考虑扭矩(转矩),电机功率和转矩是有计算公式的。 即T=9550P/n 式中: P—功率,kW; n—电机的额定转速,r/min; T—转矩,Nm。 电机的输出转矩一定要大于工作机械所需要的转矩,一般需要一个安全系数 |