西门子6ES7313-6BG04-0AB0详细说明
SIMATIC HMI 人机界面
SIMATIC 人机界面产品真正满足不同用户的个性化需求,使您*监控生产进程,保证您的机器和工厂时刻处于优化的高效运行状态。
技术趋势
随着生产过程的日益复杂,生产机器和系统需要完成的控制任务更加多样。简化这种日益增长的复杂性是我们开发每件HMI 新产品的主要目标。开放的,标准化的硬件和软件接口使我们的产品遍及世界各个角落。
工业总线系统
SIMATIC NET 培养集成完整解决方案所需的所有部件,并支持下列总线系统:
工业以太网(IEEE 802.3 和 802.11 WLAN)– 区域网络连接的标准是占有 90% 以上*的局域网环境中的首要网络标准。通过工业以太网,可在分布很广的区域内构建功能强大的通讯网络。
标准 PROFINET (IEC 61158/61784) 使用了工业以太网,可实现直至现场级的实时通讯,也可将企业级集成进来。由于全面利用了现有 IT 标准,PROFINET 还在工业以太网上实现同步运动控制应用、高效跨厂商工程组态和机器与设备的高可用性。PROFINET 支持分布式自动化和控制器之间的通讯,可实现故障安全应用。
PROFIBUS (IEC 61158/61784) – Ï的布线系统标准。¼µØλ¡£它是仅有的一种可用于在生产应用和过程应用中进行通讯的现场总线。
AS-Interface (IEC 62026-2/EN 50295) – 可替代电缆束的标准连接技术,可通过两线制总线非常经济地将传感器和执行器连接在一起。
IO 链路 –
用于智能化连接现场级到 MES 级的传感器和执行器的标准。
标准 KNX/EIB (EN 50090、ANSI EIA 776)是实现楼宇自动化的基础。
网络转换通过控制器或链路实现。可以从工厂的任何位置执行组态和诊断。
PLC顺序控制系统的几种简易设计方法
引言
在生产机械的自动控制领域,PLC顺序控制系统的应用量大面广。然而,工艺不同的生产机械要求设计不同的控制系统梯形图。目前,不少电气设计人员仍然采用经验设计法来设计PLC顺序控制系统,不仅设计效率低,容易出差错,而且设计阶段难以发现错误,需要多次调试、修改才符合设计要。本文提出的4种简易设计方法,能快速地一次设计成功PLC顺序控制系统。
顺序控制系统的特点及设计思路
1.特点顺序控制系统是指按照预定的受控执行机构动作顺序及相应的转步条件,一步一步进行的自动控制系统。其受控设备通常是动作顺序不变或相对固定的生产机械。这种控制系统的转步主令信号大多数是行程开关(包括有触点或无触点行程开关、光电开关、干簧管开关、霍尔元件开关等位置检测开关),有时也采用压力继电器、时间继电器之类的信号转换元件作为某些步的转步主令信号。
为了使顺序控制系统工作可靠,通常采用步进式顺序控制电路结构。所谓步进式顺序控制,是指控制系统的任一程序步(以下简称步)的得电必须以前一步的得电并且本步的转步主令信号已发出为条件。对生产机械而言,受控设备任一步的机械动作是否执行,取决于控制系统前一步是否已有输出信号及其受控机械动作是否已完成。若前一步的动作未完成,则后一步的动作无法执行。这种控制系统的互锁严密,即便转步主令信号元件失灵或出现误操作,亦不会导致动作顺序错乱。
2.设计思路本文提出的4种简易设计方法都是先设计步进阶梯,在步进阶梯实现由转步主令信号控制辅助继电器得失电;然后根据步进阶梯设计输出阶梯,在输出阶梯实现由辅助继电器控制输出继电器得失电。这4种设计法所设计的梯形图电路结构及相应的指令应适用于大多数PLC机型,具有通用性。
由于各种PLC机型的编程元件代号及其编号不尽相同,为便于阐述,本文约定:所有梯形图中的输入继电器、输出继电器、辅助继电器(又称内部继电器)的代号分别为:X、Y、M。设计中所用到的某些功能指令,如置位指令约定为S×,复位指令为R×;移位指指令为SR×。其中的“×"表示编程元件的编号,用十进制数表示。用这些方法设计实际的控制系统时,应将编程元件代号和编号变换成所选用的PLC机型对应的代号和编号。
图1 顺序控制流程
下面分别介绍各种设计方法。其中,前3种方法的设计依据都是图1所示的顺序控制流程。图中,步1的转步主令信号X0为连接启动按钮的输入继电器(为简明起见,后述的转步主令信号均省去“输入继电器"几个字,只提输入信号),X1为原位开关信号,X2、X3、X4分别为步2、3、4的转步主令开关信号。M1~M5分别为各步的受控辅助继电器。Y1~Y4分别为各步受控的输出继电器。
一、逐步得电同步失电型步进顺序控制系统设计法
如图2所示,这种设计方法是根据“与"、“或"、“非"的基本逻辑关系,设计成串联、并联或串、并联复合的电路结构。
图2 逐步得电同步失电步进顺控梯形图
1.步进阶梯的设计步进阶梯的结构
如图2a所示。步1的M1得电条件是受控机械原位开关X1处于压合状态(若受控机械有多个执行机构,则要求每个执行机构的原位开关均处于压合状态),满足原位条件后按起动按钮X0才能得电。M1得电后自锁,并为步2提供步进条件信号(M1的常开触点)。步1的执行动作完成时触发的行程开关信号X2作为步2的转步条件信号。步2的M2的输入满足其步进条件和转步条件后得电自锁,并为步3提供步进条件信号。按此规律即可实现后续每一工作步辅助继电器的得电和自锁。停止步M5的步进条件信号和转步条件信号分别为:后一个工作步M4发出的步进条件信号(M4的常开触点)和该步动作完成时所触发的转步信号X1。由于M5的得电信号令控制系统失电,所以M5的回路不自锁,而且要将其常闭触点串联在步1回路的左端。从步2起后续各个步的回路构成分支回路。一旦M5得电便使整个系统失电。如不用分支回路的结构,也可采用图3所示的回路。即把M5常闭触点分别串联在每步辅助继电器的回路上。应该注意的是:无论工作步还是停止步,如果某步的转步主令信号有多个,则应将多个转步主令信号互相串联。
图3 逐步得电同步失电梯形图
2.输出阶梯的设计输出阶梯
如图2b所示。其设计方法是:(1)在控制流程图中,找出某输出继电器M在哪一步开始得电和在哪一步开始失电,以此确定其得电信号(步进阶梯中使M开始得电的辅助继电器常开触点)和失电信号(步进阶梯中使M开始失电的辅助继电器常闭触点);(2)将得电信号、失电信号和受控输出继电器线圈串联。如果某个输出继电器在一个工作循环中多次得电失电,则将每次得失电的串联信号互相并联即可。例如,图1中输出继电器Y1要求在步1和步3得电,在其余步失电。在图2b画其控制回路时,将图1所示的一次得电信号M1和一次失电信号M2串联,第二次得电信号M4和第二次失电信号串联,然后将二者并联起来,再与Y1的线圈串联便构成Y1的控制回路。其余依此类推。
二、逐步得电逐步失电型步进顺序控制系统设计法
1.步进阶梯设计
按图1所示的控制流程,采用逐步得电逐步失电型顺序控制系统设计法设计的步进阶梯如图4a所示,其电路结构与图3的不同点之一是每步的失电由下一步辅助继电器的常闭接点控制;之二是步1回路必须串联步2至后工作步4的辅助继电器常闭触点。以防电路工作时,因误操作再次起动而导致控制顺序错乱。其余的电路结与图3相同。
2.输出阶梯设计输出阶梯如图4b所示,输出继电器的控制回路根据控制流程直观确定。例如,输出继电器Y1要求在步1、3得电,则将步1、3的辅助继电器M1、M3的常开触点并联,再与Y1的线圈串联即可。其余输出继电器的控制回路构成方法与此相同。
电动机通电运行时发出的噪声由两大类组成,一类是机械噪声,主要是轴承运转和风扇通风产生的;另一类是电磁噪声,是由于电磁力的作用使某些部件(例如硅钢片)产生较高频率的振动而发出的,它在断电后会立即消失,这也是区分两类噪声*简单*直接的方法。运行中,特别是断电空转时,可通过发出噪声的部位和类型初步确定产生较大噪声的部件和原因。(1)空载损耗较大原因中的(2)~(6)基本适用本项,是造成轴承噪声大的主要原因。
(2)空载损耗较大原因中的(7)是造成通风噪声大的原因。另外,轴流风扇的扇叶角度或尺寸不正确、风路(含外部和电动机内部)设计不合理或在风路中有障碍物等都会加大通风噪声(此时往往发出类似哨声的噪声)。将风罩进风孔用纸板等堵住,即切断进风,若噪声明显减小,则可确定是此原因。
(3)某些部件安装不到位或松动。
(4)定、转子之间或某些有相对运动的部件(例如轴承密封环、挡油盘、甩水环等)因安装不到位或过松、过紧等原因造成相互摩擦。
(5)对使用变频器供电的电动机,同振动大的第(5)项。
电磁噪声往往会随着电压的升高或负载的加大而增加,对于使用变频电源供电的电动机,可能会在某一频率段发出较大的电磁噪声,同时产生加大的振动。
(1)定、转子之间的气隙严重不均匀,通电转动后产生较大的单边磁拉力,将产生与转速有关的噪声。可通过对机座和端盖配合的调整(包括更换)或者车定子内圆的方法使定、转子之间的气隙均匀度达到要求,从而减轻或者消除由此发出的电磁噪声。
(2)定、转子轴向长度不相等(呈“马蹄”状)或歪斜(端面与轴线不垂直),通电转动后产生不均衡的磁拉力,发出与转速频率有关的噪声。
(3)定子铁芯叠压不紧,造成片与片之间有间隙,浸漆时又没有将这些间隙填充好,通电后在电磁力的作用下将发出频率较高的噪声。再次进行对定子浸漆可减缓或者消除此噪声。
(4)绕组端部绑扎和浸漆未达到要求,有松动现象,在电磁力的作用下产生振动而发出的电磁噪声。再次进行对定子浸漆可减缓或者消除此噪声。
(5)由于结构的原因,在电磁力的作用下,定子铁芯产生周期性的径向变形振动而发出的电磁噪声。
(6)定转子槽配合不合理或槽口较大、气隙较小,均会产生频率较高的电磁噪声。对于气隙较小的情况,可通过进一步车小转子外径的方法消除此种电磁噪声。
(7)当铁芯的固有频率较低时,起动过程中可能会出现较大的电磁噪声,在起动过程完成后,将会下降甚至消失。
(8)由于设计的磁路不合理或因硅钢片的导磁性能较差、加工质量偏离工艺要求较多(例如冲片毛刺较大、铁芯叠压不实或轴向长度不足等)等原因,造成铁芯磁密过于饱和,将产生较大的电磁噪声,该噪声将随电压的升高而明显增加。
(9)其他与电磁有关的部件产生的电磁噪声。