6ES7214-1HG40-0XB0西门子紧凑型CPU
软PLC控制技术是基于软件和硬件在逻辑功能上等效的思想,采用开放式体系结构,通过软件来实现PLC硬件的功能。软PLC系统由上位机和下位机组成,上位机为用户提供编辑界面和多种编程语言环境,便于用户在PC机上进行PLC程序的编辑,同时还对下位机的一些状态量进行监控,并给下位机发送指令。
用户编辑完PLC的梯形图和指令表程序后,只有通过对程序的编译来获取程序的逻辑后才能按照PLC的工作原理运行。为了配合在PC机上运行的软PLC编辑开发系统,使PC机完成相应的控制功能,开发了软PLC编译系统。
1、软PLC程序编译系统的组成
PLC编译模块由梯形图语法检查模块、梯形图程序逻辑检查模块和指令表程序语法检查模块组成。梯形图程序语法检查模块检查用户PLC图形程序有无指令标记重复、指令地址越界等语法错误;梯形图程序逻辑检查模块检查PLC图形程序有无逻辑错误;语言程序语法检查模块检查用户语句程序有无拼写、指令格式、指令地址越界等语法错误。
编译程序的构造包括词法分析、语法分析、语义分析、错误的检查和处理以及代码生成和代码优化等程序。
2、软PLC程序的遍历算法
软PLC程序的遍历算法主要包括梯形图遍历算法和指令表遍历算法。梯形图程序由若干个梯级组成,遍历时以梯级为单位,采用深度优先的扫描方法。按从上到下,从左到右的顺序进行。在扫描过程中,遇到并联结点就转入下一行进行扫描,行与行之间的切换由指针的变换来实现,原先位置的指针被预先存储起来,待并联模块扫描完后。再从原来的位置开始往下扫描。梯级和扫描顺序如图1所示。
图1 梯级和扫描图
指令表是由一系列指令组成。且指令按照链式结构存储,按照顺序读取指令即可完成对指令表的遍历。
3、梯形图与指令表程序的相互转换
3.1 梯形图转换成指令表
梯形图转换成指令表是以梯级为单位进行的。
对于没有并联支路的梯级,只要根据梯形图元素在梯级中的位置和元素的类型,即可将梯形图转换为指令表。对于包含有并联支路的梯级,可以按照遍历梯形图的方法,一边遍历一边转换。在转换过程中,首先设定1个全局变量nDepth(梯级深度),以确定梯级的深度,然后判断1个梯级是否包含并联支路。如果包含则调用包含有并联支路的转换程序,然后顺序读入当前梯级深度层次上的梯形图元素;如没有发现并联支路,则调用不含并联支路的转换程序依次转换。在转换过程中。每转换完1条支路就要添加1个ORB支路并联指令。
在对整个梯形图程序进行转换时,首先生成nLine(行号)和nDepth 2个全局变量,然后从头开始进行转换,转换完1个梯级后。下1个梯级从第nLine(nLine=nLine+nDepth+1)行开始,直到梯形图文件结束为止。
3.2 指令表转换成梯形图
指令表转换成梯形图的过程就是根据PLC指令语句生成相应的梯形图元素链表的过程。因为梯形图和指令表程序是一一对应的关系,可按照语句对应生成相应的梯形图元素,利用在梯形图向语言表转换文件中已设计好的位图资源,建立标志符和位图之间的相应关系。转换时,将语句表以文件流的方式存入文本文件中,逐行分析,通过适当的算法处理,在视窗中画出对应的梯形图符号,直到文件结束。此外,在转换过程中,需要将程序划分为若干小节,每节对应梯形图中的1个梯级。在指令表中,梯级的划分可根据OUT指令来进行。串并联模块的划分可根据ANB和ORB指令进行。
4、软PLC程序的语法分析
在对PLC程序进行编译时,先将由PLC其他语言编写的程序转化为指令表后再进行处理。程序语言的文法通常包括I组终结符、I组非终结符、1个开始符号和1组产生式。
4.1 软PLC程序的文法设计
软PLC程序文法主要指PLC指令表语言的文法设计,PLC指令表语言与梯形图语言存在一一对应的关系。PLC的指令表程序由若干条语句组成,每条语句包括语句号、操作码和操作数。操作码是PLC指令系统中的指令代码,包括逻辑取、触点串联指令、触点并联指令指令、支路并联指令、支路串联指令和线圈驱动指令。操作数主要是PLC内部的继电器、定时器和计数器。下面是一段PLC指令表例程。
以三菱公司F1系列的逻辑指令为例来说明指令表文法的设计,并选取指令集中的一个子集来作为研究对象,该子集由逻辑取指令(LD,LDI)、触点串联指令(AND,ANI)、触点并联指令(OR,ORI)、支路并联连接指令(ORB)、支路串联连接指令(ANB)和线圈驱动指令(0UT)等基本指令组成。
为了便于分析,用单个小写字母代替指令,即LD,LDI→a;AND,ANI→b;OR,ORI→c;ANB→d;ORB→e;0UT→f。指令表的文法可表示为1个四元式(Vt,VN,S,φ),其中,Vt是终结符号集,包括{a,b,e,d,e,f};VN是非终结符号集,包括{S,H,K,A,B,D,E};S是开始符号;φ中是产生式集(@代表空集)。因
此,指令表程序的文法G[S]为S→aHfS; S→AfS;S→@;H→EH;H→@;K→EK;K→@,A→DA;A→@;B→e;D→b;D→c;E→D;E→aKB。
由G[S]产生式,可推出空串的非终结符集合为{S,H,K,A}
1 问题的提出
在现代工业生产中,PLC的应用极其普遍,在大型的集中控制系统中,通常会用到多个PLC,每个独立的PLC又由相对独立的程序组组成,每个程序组控制几台至几十台设备,各台设备间的控制要求较多,有的被控对象自身较为复杂,这就使得PLC控制也就越趋复杂。
PLC控制的复杂性,自然也就使其软件设计更加繁琐。其软件设计在满足生产工艺和电气联锁控制关系的基础上,还应尽可能满足在使用上操作简便、直观,这包括:PLC主机自检;自动进行设备组备妥检查;系统音响试验输出;程序组启动预告输出;程序组设备的正常启/停联锁、运行联锁、紧急停车;组设备运行状态输出;设备启动过程中或系统正常运行后设备故障时的故障联锁停车、故障报警输出;故障解除后复位且能够从故障设备位置重新完成程序组设备顺序启动的控制等。
2 解决的思路
控制对象和对象之间关系的多样性,体现在PLC程序的编写上,就越来越庞大。这样采用一般面向过程的方法进行PLC编程会变得十分困难,且程序的调试和修改也同样十分困难。因此,必须采用面向对象的编程方法。主体思想有两条:
第一条:为程序组中每个独立的被控对象或需要同时启/停的一组被控对象建立功能/数据模块FB/DB,被控对象在程序组中的联锁关系及自身控制要求都通过功能模块FB的外部属性和内部属性进行体现。
第二条:为每个PLC控制系统的每个程序组分别定义和创建公用模块FC,每个公用模块FC的入口/出口条件作为公共对象的外部属性;把按功能划分的设备间的故障判定、功能输出等作为公共对象的内部属性。
3 程序设计的方法
对于各个PLC集中控制系统,首先根据工艺生产流程,将整个车间分成若干个工段。在每个工段内,根据驱动设备的启停顺序和流程分支,将驱动设备分成若干个组。对于每一个组的驱动设备,在正常操作情况下,根据工艺流程,逆流程开车,顺流程停车。为了减小设备启停对电网的冲击,所有设备都是按顺序单台启动,根据设备的容量大小和启动特性,每台设备的启停相对于前一台设备都设置了相应的延时时间。对于操作员来说,整个生产线的启动,只是按设计的操作顺序启动每个组,只不过是点几下鼠标而己,不需要每台设备都去操作,使得操作非常简单。
3.1 段控制
从生产工艺考虑,不需要其它设备的参与,能够独立完成一定生产任务的一些设备的集合被称为一个段。一台PLC可以单独控制一个段,也可以几个小段由一个PLC控制。根据段的控制要求,设计一个通用的功能块FB220,功能块如图1所示,其主要功能如下:
图1 段控制功能块
检测系统状态:
AC220V控制电源状态;
DC24V控制电源状态;
PLC电池电压状态;
PLC冷却风扇状态;
系统紧急停车开关位置;
接收上位机的预警测试指令;
3.2 组控制
按生产工艺,在同一时间段内允许同时开停的设备作为一个组,组内设备的开停不依赖于其它设备的开停,它收集组内各台设备的驱动状态,汇总后送至上位机,并接收上位机发出的各种控制指令,通过组控制字节分别送至每个驱动。组控制功能块FB227,其控制过程如图2所示:首先向FB227中输入参数AUX1,AUX2,FB227接收上位机指令GCOM,并采集组内设备的驱动状态STAC;然后FB227将组控制字节GRUP送至每个驱动,将组状态GSTA、组报警GALM送至上位机。
图2 组控制过程框图
3.3 驱动
驱动分为马达驱动和电磁阀驱动,马达驱动按控制方式分为主驱动和辅助驱动马达。主驱动马达是指为维持正常生产必须持续运行的马达,其开停与组的开停同步,若遇有分支的情况下,通过选择来确定。辅助驱动马达是指在生产过程中不是每时每刻都需要参与的马达,它的开停是根据生产的需要,是断续运行的设备,其开停依赖于组,但又不完全由组控制。按马达种类分有单向马达、可逆马达、电动执行器、电动推杆等。根据每种驱动的控制要求编写各自的功能块,在主程序中可以很方便地调用,使得程序结构简单,易于维护。单向主驱动马达的功能块FB200,其驱动过程如图3所示。
图3 驱动过程框图
4 结 论
采用面向对象的编程方法,设置PLC段、组、马达驱动等功能模块,尽可能按功能要求创建各种功能模块,在主程序中进行调用,使得复杂系统PLC的编程问题变得有迹、有序、系统和规范化,复杂问题简单化了,其发展前景无限