6ES7 212-1AE40-0XB0技术参数
铝电解模糊控制系统是在大量长期工业实践应用基础上,结合控制技术与计算机技术的发展,吸收国内外同类产品**技术,总结生产、应用中的经验,研制成功的新型铝电解模糊控制系统。该系统采用分布式控制方式。主机(上位机)采用Pentium系列或以上工控机,应用软件在NT系统下开发,设计的语音报警、报表管理、系统监控等软件程序,能实时显示电解槽工作电压,电解系列电流,槽电阻等曲线,自动统计班报、日报、周报、月报、效应等,并可随时打印;自动语音广播电解槽效应,电压异常等工作状况,实时监控系统工作状态。铝电解模糊控制机(下位机即槽控机),以RX3i PLC作为微控制器,实时采集槽电压,电解系列电流,输出各种控制动作;实时显示电解槽各种状态,槽控机控制状态,具有显示信息量大、清晰、易操作等优点。槽控机在主控制部分,设置光电隔保护,有效防止外界信号对控制核心的影响,提高工作可靠性。槽控机设计硬件电路简洁,维护更加容易。槽控机的工作状态,可由主机授权,有利于电解生产的操作管理。铝电解模糊控制系统具有在线故障自检功能,运行中出现的故障在上位机、槽控机均能提醒,显示,使维护人员能尽快检测故障,迅速维修[1] 。
1.硬件系统组成
1.1 布式控制硬件结构框图
该控制系统采用DDC(直接数字控制)、SCC(过程监控)两级分布式控制方案,原理图见图1.1。每台槽控箱控制1台电解槽,同时每台槽控箱都有独立的PLC作为主控制器,负责对系列电流、槽电压和各种开关量输入信号的采集,数据解析,模糊推理,判断槽中氧化铝浓度,并通过调节下料时间间隔以及极距,达到电解槽内物料平衡和热量平衡。
过程监控级通过RS-422通信总线与槽控箱中的PLC通信,从中获取相关信息,通过对信息的加工、处理,实现槽况诊断,从而实现对DDC级的参数修改、优化,同时也为人工操作和维护决策提供可靠的依据。
多区域的SCC均可连接起来,构成一局域网,在原有二级基础上扩展一级MIS(管理信息系统)级,并实现与全厂计算机网络的联网,便于领导决策[2][3] 。
2 槽控机工作原理
槽控机分为逻辑部分和低压电器部分上下箱体,该机CPU采用GE Fanuc RX3i PLC,通讯板采用CAN工业现场通讯总线智能通讯板,每台槽控机通过低压电器部分的输出驱动电解 槽上的电磁阀、电机、效应灯、效应铃完成相应控制动作,电解槽与PLC之间连接图如图2.1。槽控机控制软件用Turbo C2.0语言开发,代码分离、实时多任务运行方式,运行速度快、响应即时,同时具有数据掉电保护和“看门狗”功能,PLC的I/O简图如图2.2。
主要控制模块及功能的开发:
* 数据采集
* 自动打壳下料控制主要完成定时加料过程(打壳—下料—冲料/反吹)
* 槽电阻波动控制
* 氧化铝浓度模糊控制
* 阳极效应预报和效应控制
* 阳极效应报警和熄灭阳极效应一旦发生,槽控机即发声光报警,并进人熄灭阳极效应的过程。
* 出铝控制过程
图 2.2 I/O 简图
3 组态软件的设计
组态软件Monitor and Control Generated System(M0GS)是一套基于bbbbbbs平台,用于快速构造和生成上位机监控系统的组态软件系统。它提供了从数据采集到数据处理、流程控制、动画显示、报表输出等解决实际工程问题的完整方案和开发平台[4] 。
利用PLC和组态软件这两种技术平台进行开发研究 ,能跟踪当代技术发展的潮流,应用目前**的微电子技术,能使电力供电的每一项典型装置,在新的技术支持下得以实现。并为电力系统其他装置的更新换代,创造出新的领域。MCGS是一项新的技术手段。普通工程人员经过短时间的培训就能正确掌握,快速完成所需的工程项目。使其能集中精力解决工程本身的问题,而不需要太多了解计算机系统复杂的软、硬件问题,降低了开发难度。
① 工作界面设计
组态(Configuration)的意思就是模块任意组合,其界面由电气运行主接线图、报表数据、运行曲线、报警系统、安全机制5大部分组成。
A 电气运行主接线图。将各电气设备按主接线方式通过动画的形式仿真模拟出来,其中包括了时实的电流、电压、有功功率、无功功率电气量的显示。
B 数据报表。数据是系统运行状态的体现,通过组态软件作出实时数据报表和历史数据报表,给运行人员提供分析和提示系统运行情况的数据。
C 运行曲线。根据系统运行的情况,通过组态软件作出实时运行曲线和历史运行曲线。让运行人员清晰地看到系统运行发展趋势。
D 运行操作界面还设置了保护报警系统,一旦运行系统保护动作,报警系统发出显示信号和音响信号。
E 安全机制。通过组态软件作出的安全机制控制了各种级别人员操作权、控制权和访问权。
② 组态与PLC通讯
组态软件提供了大量的工控领域常用设备驱动程序的接口,首**入设备窗口,设定串口通讯父设备,再选定PLC种类。调出设备属性窗口,设置PLC与监控系统的时实数据连接通道。就可使界面与PLC设备进行数据交换。不需要了解计算机和I/O设备的详细结构,编写单独的接口程序,因此降低了系统设计的难度,简化了系统设计过程。
1 原控制系统的不足
我厂2号机立窑和粘土烘干机分别于1992年、1993年选用了LFEF型玻纤袋除尘器。该除尘器采用了分室反吹、定时定阻清灰、温度检测显示等技术,可不停机分室换袋,除尘效果明显,是较理想的除尘设备。除尘器控制系统应用Z—80单板机进行控制。经过一段时间使用后,发现该控制系统存在以下不适应我厂运行条件和环境的问题。
(1)系统中的转换开关、中间继电器过多(转换开关7个、中间继电器达20~30个)。由于触点开关受运行环境影响大,因而故障率高,据统计两台除尘器因控制系统故障停机占整个除尘器停机时间的2/3左右。
(2)系统设计中程序控制可调性差,停电后记忆功能易消失,送电后,需重新修改参数值,给岗位操作工带来不便。
鉴于上述原因,1994年在对3号机立窑、矿渣烘干机采用LFEF型玻纤袋除尘器进行除尘改造的同时,在该除尘器控制系统应用了日本立石(OMRON)公司生产的可编程序控制器(即PC)代替原设计中的单板机。经过近三年的使用,取得了满意效果。
2 PC机控制系统设计
2.1 控制过程分析
除尘器的控制,是一种延时控制过程。PC机上电10s,卸灰螺旋输送机开;5s后卸灰阀动作开始卸灰,每室卸灰时间为5s,室间卸灰间隔2min,后一室卸灰后20s,卸灰螺旋输送机停。10s后,反吹风机开;5s后清灰阀动作开始清灰,每室清灰时间为5s,室间清灰间隔为3min,后一室清灰后10s,反吹风机停,除尘器一个工作周期结束。20min后第二个工作周期开始。当废气温度超过上限,为防止烧毁滤袋,冷风阀打开;当废气温度低于下限,为防止糊袋,PC机发出音响报警信号,通过调节烘干燃烧室加煤量或减少被烘物料下料量来提高废气温度;当废气温度恢复正常后,冷风阀自动关闭,燃烧室加煤量或被烘物料下料量即可恢复正常。
2.2 系统功能设计
现以矿渣烘干机用8室袋除尘器为例说明。为满足生产要求,设计了手动/自动控制方式。当开关K1处在“手动”位置,可在控制屏中用手动完成除尘器清卸灰动作;当K1处在“自动”位置,系统进入自动工作状态。选用C28P—CRD—A+C16P—DR—A型PC机即可满足系统功能要求。系统中有4个输入信号,23个输出信号,内部信号采用TIM计时器和CNT计数器。
2.3 程序设计
程序设计采用梯形图语言。该设计共分三个部分:一是机器系统及检测报警系统;二是卸灰控制部分;三是清灰控制部分。为适应生产工况变化,设计中为所有参数可随时调整并有记忆功能。
为提高系统可靠性,对反吹风机、冷风阀等控制输出,增加了阻容保护回路。电气控制原理见附图。
3 控制系统调试
本系统先采用模拟调试,即模拟各种输入信号并对所有输出信号进行测试,看其是否符合控制过程要求,用以考察PC机的控制程序的完整性和可靠性。然后,再现场进行空载联动试车,后进行带负荷联动试车。
4 使用效果
(1)简化了控制系统,节省了大量有触点控制元件,工作性能可靠,降低了控制系统的故障率。除尘器的运转率比改造前提高二十六个百分点。
(2)时间参数可根据工艺要求随时调整,且不受停电等因素的影响。修改参数简单易行,还可灵活进行各室清灰顺序的组合,对含尘气体通过量较大的室和粉尘滞留过多的室可有重点地进行清理,保证了过滤效果,满足了工艺变化的要求。
(3)减少了维修工作量,降低了维修费用,系统操作简单,岗位工人容易掌握、调整。
一、 工艺过程简介
由配料岗位生产的料液放入储罐中待用,料液必要的理化指标经检验合格后即可投入生产。干燥介质(空气)在换热器中经热风炉烟道气加热至所需温度后,由塔顶经布风板进入干燥塔内。具有一定温度及浓度的料液由计量泵加压后经塔项孔板喷出,在干燥塔内上部空间形成具有一定分布密度的料幕区。料粒与热空气自上而下,顺流进行热量及水份交换,大部分干物料由塔底泄出,部分细粉料随空气由引风机从塔底出风抽入旋风除尘器中,定期由旋风下料器排出。(图1所示)
二、 系统规模
系统规模为:模入AI:26点,模出AO:10点,开入DI:28点,开出DO:14点,
共计:78点
三、 控制系统选型:
由于该工程为计算机改造项目,没有条件将系统(特别是计算机部分)安置在一个环境相对较好的控制室中,只能与原来的仪表盘一起放在现场操作室内。环境相当恶劣,粉尘严重,且特别易吸潮,强腐蚀性;整个操作平台上有严重的震动;另因现场测温元件及信号线沿用已有的,这些信号线与大型风机等的动力线混敷设,无任何抗干扰措施。针对以上情况并考虑能够尽量节能挖潜,所以我们选用了以下设备作为控制系统的软硬件平台:
1 计算机及外设(操作站): 15”高分辩率彩显/研华媒体工控机/500VA UPS供电
完成工艺过程监视、数据表显示、控制回路设定、趋势曲线图、报警显示记录、报表打印及系统自诊断等。
2、控制系统(控制站): 选用美国OPTO 22公司SNAP 现场分布式I/O控制系统
该系统具有以下特点:各硬件组成结构紧溱,欧式PIN接插件可靠性强于金手指型,优质铝合金外壳封型较好,因此特别适宜于安装在环境恶劣的工作场所,与上位机通信灵活,一根电缆进控制室即可,节约了大量的电线,且系统软硬件环境的开放性使得其扩展及网络化集成工作非常容易实现。另外其现场I/O模块采用4000VDC光电隔离,具有及强的抗电磁干扰能力,各通道分别设置看门狗,且质量终身保用;控制器可双机热备,RAM/EEPROM方式仍你选择,完成控制策略的执行及分发,并负责与主机的通信;单元控制器,协调本单元内各模块、通道的工作,完成单元内的工程单位转换、非线性处理、PID运算、报警处理、滤波、开方等基本操作,并与控制器进行实时数据交换,向控制器发出中断请求等。该系统采用多级CPU并行处理模式,可靠性高,运算速度快,非常适用于实时测控领域。
3 控制软件:
OPTO 22公司的FACTORYFLOOR工控软件,完成控制应用程序的组态、调试、实时人机界面、通信控制以及实现工厂级管控一体化等。与其它组态软件比较,其完全开放的系统模式及第三方产品(只要是用Microsoft VB/VC++开发的应用程序)的良好兼容性,为用户提供了友好的二次开发环境。
4 现场仪表及执行器:
1) 37KW引风机、11KW送风机及炉膛鼓风机,采用西门子公司ECO系列变频器控制;
2) 日本生产的大气露点仪,用于监视环境湿度的变化;
3) 密度式料液浓度计;
4) 笛型管配套电容式差压变送器,对热风量进行监测;
5) 电容式差式变送器测负压,监视换热器及干燥塔的工作状态;
6) 利用铠装热电阻快速准确测量料液温度;
7) 气动薄膜调节蝶阀,对经过换热器的热载体部分旁路,进行塔顶温度修正;
四、 控制关键:
1 开关量部分:
1) 根据人工指令,并结合高位槽料位情况以及料液温度控制料泵的运行;
2) 根据人工指令、热风温度及热风量的大小以及运行中隔膜泵的压力变化,控制隔膜泵的运行。
3) 根据炉膛温度与其设定值的偏差,进行送煤机的时间比例(TPO)控制;
4) 按热风炉操作规程进行排渣提醒,并在规定时间内无人工排渣过程时,进行强制定时排渣;
5) 高位槽、低位槽及水沫除尘料位报警;
6) 对人工停车指令进行确认,按规程中的指标要求完成整个工艺过程(含热风炉、换热器)自动停车的全部顺序控制;