西门子PLC模块6ES7518-4UP00-0AB0
1 引言
在棉纺工艺过程中,粗纱机的主要功能是对棉条进行一定的牵伸,以使棉条达到一定的牵伸倍数并制成一定的卷绕形式,便于储存和搬运,适应细纱机的喂入。粗纱工序粗纱机自动化系统构造目前市场主要分为三大方案:其一,利用工业控制计算机、板卡、变频器;其二,触摸屏、PLC、变频器;其三,触摸屏、单片机模块、变频器。在这三个系统方案都必须面临的一个问题:就是掉电需要多电机同步停止。目前普遍采用了的是变频器进入刹车状态,产生再生能量来保证电机同步停止。
2 外挂母线电容储能同步制动设计
2.1原理设计
根据一般变频器原理,直流母线电容用于滤除整流器交流成分和稳定逆变器供电电压。对于多电机独立变频驱动的粗纱机,母线电容具有在事故掉电时刻利用存储的电能提供再生制动激励能源的潜在功能。由于标准母线电容容量通常仅仅是为满足滤波与稳压,难以满足掉电制动能量需求,提出外挂大容量母线电容储能同步制动方案。外挂电容会对变频器的整流器造成巨大的启动电流冲击,利用粗纱机PLC实现软启动保护设计,原理类似于变频器内部母线电容串联启动保护电阻。针对母线电容储能同步制动设计,台达B系列变频器针对粗纱机的应用特点进行了软件的客制化修改设计。
2.2台达B系列变频器软件客制化修改
台达B系列变频器针对粗纱机的应用特点进行了软件的修改设计。
(1)增加再生能量产生功能选择。参数06-19进行再生能量产生的功能选择,当06-19=0时变频器和标准品变频器一样。当06-19=1时检测到低电压时,变频器立即闭合外部端子EF并且进入第二减速时间。
(2)设置外部端子EF检测电压准位。06-16为设置EF检测电压准位,在图1中的。06-17为电压检测的时间。整个过程是当变频器检测到直流母线上的电压小于或者等于06-16的准位并且持续时间达到了06-17设置时间。变频器则立即进入减速刹车状态,刹车时间是根据第二减速时间02-12来设定。
(3)满足系统需求的制约因素分析。06-16检测电压准位,02-12减速时间与外部电容容量。06-16检测电压准位设定越高,则越有足够的能量保留,但是电压准位太高将无法满足粗纱机中电网正常电压偏低运行性能;02-12减速时间设置越短越有利停车,但是过短造成机械的震动;外部电容容量越大则越有利停车,但是过大则成本和体积就会随之增大。因此这三个方面要取一个适中的点。
3 外挂母线电容量计算
3.1计算目的
(1)计算需要外挂电容容量多少,才能保证满负载粗纱机在掉电时能够同步停止。
(2)设计外部软启动电路,保证在加大变频器电容情况下减少上电的冲击。
点击此处查看全部新闻图片
3.2计算步骤
(1)电容端口电压曲线分析
电容端口电压曲线分析参见图1。母线电压包络线衰落代表电机机械能量在刹车过程中转化衰减。母线电压锯齿曲线说明刹车过程中的间歇制动是根据电压准位值判定实现的。
其中:
电容端口电压
台达B系列变频器EF检测电压准位
B系列变频器进入刹车之后能量开始回馈时,电容两端电压
从EF检测电压到能量开始回馈的时间
粗纱机发现掉电后能够同步停车的时间
为电容端口电压方程的常数
(2)计算常数
台达B系列变频器通过修改内部软件,缩短EF检测电压到进入减速刹车状态的时间。
现在暂时认为=80ms(此数据目前只能估计),设置参数06-16=495即=495,估
计=452。也就是当电网电压为AC350,系统认为开始掉电,进入刹车状态,当电容端
口电压降为DC452也可以认为直流母线电压为452。系统开始有再生能量回馈。据此可以
计算常数。
(3)电容端口电压和端口电流之间的关系
点击此处查看全部新闻图片
(4)电容量计算
根据实际情况,粗纱机在满负载情况下需要的电流大约10-15A,现在粗略估算i=13A,则:
点击此处查看全部新闻图片
因此可以选择的满负载时,外挂电容在2-3万微法。
这是一个实际的例子,可以根据实际的需要通过改动相关的参数,根据上面的计算公式就可以完成其它电容容量的选择。
4 软启动保护电阻设计
4.1软启动原理
在任何电压型变频器中都有大容量电容的存在,当上电瞬间相当于给电容两端一个阶跃信号。如果直接加入电容两端则电容的充电电流很大,将严重影响电容的寿命。对此大部分变频器在整流部分之后加入了软启动电路。根据这个思想在粗纱机中由于除了三台变频器的本身的电容之外,还在直流母线上外挂了大容量电容,因此需要设计软启动电路来保证变频器的寿命。主要思想如下:在变频器的直流母线上外加电容如图2所示,接触器的控制端由PLC来控制,当上电时PLC延时一段时间,等电容通过电阻R充电之后,接触器闭合旁路电阻R。
点击此处查看全部新闻图片
图2软启动电路图
4.2软启动电气参数计算
根据上例计算结果,如果粗纱机外挂电容为0.024F,对0.024F电容充电电流希望控制
在1.2A以内,则:
点击此处查看全部新闻图片
选择软启动电阻470欧功率不低于600瓦。PLC上电之后延时时间要有15S以上。旁路接触器选择通过电流在25A/50A。
5 结束语
变频器驱动粗纱机多电机掉电同步制动是纺织工业的特殊问题。掉电时刻系统已经完全失去外部能源供应,一般意义上的变频器制动完全失效,导致上百根纱锭断线,需要长时间的人工接线恢复作业。因此本文讨论的外挂母线电容同步制动方案具有积极的实用意义。项目已经通过研发阶段,投入工程应用。
数控机床是现代制造业的关键装备,一个国家数控机床的产量和技术水平在某种程度上就代表这个国家的制造业水平和竞争力。我国数控机床的技术水平、性能和质量与国外产品比较还有很大差距。高性能加工中心和功能部件大多数依靠进口。加工中心是数控技术的集中体现,市场活跃、需求旺盛,成为当前和未来数控机床市场争夺的前沿。
加工中心是备有刀库并能自动更换刀具,对工件进行多工序加工的数字控制机床。工件经一次装夹后,数字控制系统能控制机床按不同工序,自动选择和更换刀具,自动改变机床主轴转速、进给量和刀具相对工件的运动轨迹及其他辅助机能,依次完成工件几个面上多工序的加工。加工中心由于工序的集中和自动换刀,减少了工件的装夹、测量和机床调整等时间,使机床的切削时间达到机床开动时间的8O%左右(普通机床仅为15~20%);同时也减少了工序之间的工件周转、搬运和存放时间,缩短了生产周期,具有明显的经济效益。加工中心适用于零件形状比较复杂、精度要求较高、产品更换频繁的中小批量生产。 台加工中心是1958年由美国卡尼-特雷克公司首先研制成功的。它在数控卧式镗铣床的基础上增加了自动换刀装置,从而实现了工件一次装夹后即可进行铣削、钻削、镗削、铰削和攻丝等多种工序的集中加工。二十世纪70年代以来,加工中心得到迅速发展,出现了可换主轴箱加工中心,它备有多个可以自动更换的装有刀具的多轴主轴箱,能对工件同时进行多孔加工。这种多工序集中加工的形式也扩展到了其他类型数控机床,例如车削中心,它是在数控车床上配置多个自动换刀装置,能控制三个以上的坐标,除车削外,主轴可以停转或分度,而由刀具旋转进行铣削、钻削、铰孔和攻丝等工序,适于加工复杂的旋转体零件。加工中心按主轴的布置方式分为立式和卧式两类。卧式加工中心一般具有分度转台或数控转台,可加工工件的各个侧面;也可作多个坐标的联合运动,以便加工复杂的空间曲面。立式加工中心一般不带转台,仅作顶面加工。此外,还有带立、卧两个主轴的复合式加工中心,和主轴能调整成卧轴或立轴的立卧可调式加工中心,它们能对工件进行五个面的加工。加工中心的自动换刀装置由存放刀具的刀库和换刀机构组成。刀库种类很多,常见的有盘式和链式两类。链式刀库存放刀具的容量较大。换刀机构在机床主轴与刀库之间交换刀具,常见的为机械手;也有不带机械手而由主轴直接与刀库交换刀具的,称无臂式换刀装置。为了进一步缩短非切削时间,有的加工中心配有两个自动交换工件的托板。一个装着工件在工作台上加工,另一个则在工作台外装卸工件。机床完成加工循环后自动交换托板,使装卸工件与切削加工的时间相重合。
2 数控机床主轴驱动
主轴驱动系统是数控机床的大功率执行机构,其功能是接受数控系统(CNC)的S码速度指令及M码辅助功能指令,驱动主轴进行切削加工。主轴的驱动可以使用交流变频或交流伺服2种控制方式,一般的交流变频主轴能够无级变速但不能准停,需要另外装设主轴位置传感器,配合CNC系统PMC (指数控系统内置PLC)的逻辑程序来完成准停速度控制和定位停止;交流伺服主轴本身即具有准停功能,其自身的轴控PLC信号可直接连接至CNC系统的PMC,配合简捷的PMC逻辑程序即可完成准停定位控制,且后者的控制精度远远高于前者,所以目前大多数加工中心的主轴驱动系统采取交流伺服主轴。参考交流伺服主轴的功能,台达公司开发出新一代的交流变频驱动器——VE变频器,除了功能和性能完全能够和交流伺服媲美,而且还具有通用性强以及价格上的优势,通过多次测试深得客户的认可与喜爱。
3 台达VE变频主轴驱动系统
3.1 系统设计要求
(1)VE系列变频器功能和性能的数控特性。项目客户为数控加工中心企业。结合客户的要求以及加工中心的特性,台达专门为数控加工中心开发的高性能变频器----VE系列变频器功能和性能是非常适合使用在数控加工中心上的:
·通过外部I/O点能够实现快速单点定位,有专门参数调整定位时的特性曲线以及定位时间,定为实现方便;
·通过专用参数调整达到快速加减速的实现;
·全新的PDFF控制,使增益的调整更加简单方便,易于掌握;
·接受模拟量信号和脉冲信号,对上位机的支持更加全面。
(2)测试加工中心配置:
·数控系统:台湾新代数控系统SYNTEC 9401;
·主轴规格:无锡博华电机8kw/大频率600hz-12000rpm/6P/380V/450hz/25A,编码器+5V/GND/+A/-A/+B/-B/+Z/-Z/512ppr;
·变频器规格:075V43A-2+EMV-PG01L,软件版本9.98测试版,制动电阻1500W/75ohm。
3.2 主轴变频系统设计
(1)变频器电气设计:参见图1。
图1 变频器配线图
3.3 变频器参数设计步骤
(1)将电机参数设置到变频器,作电机动态自整定。要想将VE系列变频器的高性能发挥出来,准确的电机参数是基础。首先将基本参数填入到变频器相关位置:
并且使用以上参数作VF控制运行,具体情况如下表,观察后符合电机运行特性。
(2)解决一个有趣的工程问题。在以上数据中,电机额定转速05-03是电机厂家铭牌没有提供,询问电机厂家也不是很清楚。这种情况下,由于电机本身带编码器,通过VF控制,将变频器运行到450hz,观察变频器中提供的r状态,电机实际转速为8900rpm左右,将测的数据填入到05-03。电机额定电流25A,075V43A-2变频器额定电流只有18A,所以只能将电动机额定电流尽可能的调整到大(大为21.6A)填入05-01参数。
将参数5-00=1,然后按面板”RUN”作动态整定。
整定后电机参数为
11-01参数关系到编码器方向的选择,如果设置不当,则PG闭环控制会出现问题。11-01设置是否正确可以通过在变频器面板r状态的观察,r如果是正值则表示方向设置正确,如果是负值则表示方向设置相反。
(3)将控制方式改为foc+pg,并且调整大操作频率以及加减速时间
使用面板运行。首先将F=550,运行后发现不论启动过程还是停止过程,当输出频率到达450HZ左右时就不按照加减速时间来变化,变化非常缓慢。当出现以上现象时,可以通过调整参数11-05(M1IdsRef Limit)来解决,将11-05从出厂值90改为110后加减速过程正常。
图2(F=590,11-05=180)加速曲线
(4)作惯量估测以及ASR自动调整。将参数11-00=2,F=200HZ,01-12=01-13=1,正反转后测得惯量参数为49,之后将11-01=1,观察电机刚性,并对相应参数作修改。
(5)外部I/O功能的设置:
参见图1,MI1为单点定位,MI2为/第二加减速时间切换,MI3为脉冲位置命令输入使能做单点定位时,FWD/MI1闭合,变频器做定位动作。有如下参数对定位的灵敏程度以及定位时停止位置有关系,调整位置时可以将主轴停止在需要定位的位置并且观察面板上的G状态值,确定位置正确后将观察到得G值填入到10-19中;定位过程的灵敏程度通过调整10-21/10-22来改变,10-21越大,10-22越小,反映越快,定位过程越短;10-21越小,10-22越大,反映越慢,定位过程也越长。
目前脉冲控制提供两种模式:速度模式以及位置模式。当工作在速度模式下,只需要将频率来源信号设置为脉冲给定,并且按照上位机提供的脉冲信号设置给定方式;如果变频器需要工作在脉冲位置命令模式,除了速度模式下的参数需要设置外,还需要配合外部端子信号FWD/MI1/MI2/MI3的闭合。
3.4 VE系列变频器脉冲输入控制
VE系列变频器支持两种脉冲输入方式:1.A/B相脉冲输入;2.脉冲+方向输入。由于新系统提供脉冲+方向的输出方式,所以可以选择如图3中第3种或者第4种方式;然后再根据方向来作出后正确的选择。
图3 接受的脉冲输入方式
使用脉冲控制时,还有两个参数也是非常重要的:1.10-17PG电子齿轮A;2.10-18PG电子齿轮B。其计算公式为转速=脉冲频率/编码器的点数(10-00)*电子齿轮A/电子齿轮B。
3.5加减速特性
加减速特性的测试,首先将保护功能作适当调整:
1-12=1,1-13=5,F=590
从0加速到590hz的加速过程中实测加速时间为1.4s,加速中大电流为19.3A,图形参见图4。
图4 加速曲线
1-12=5,1-13=5,F=590
从590hz减速到0hz的减速过程中实测减速时间为5.1s,减速中大母线电压为740VDC,图形如图5所示。
图5 加速以及减速曲线
4 结束语
数控加工中心对主轴有较高的控制要求,首先要求在大力矩、强过载能力的基础上实现宽范围无级变速,其次要求在自动换刀动作中实现定角度停止(即准停),这使加工中心主轴驱动系统比一般的变频调速系统或小功率交流伺服系统在电路设计和运行参数整定上具有更大的难度。基于台达VE系列高性能变频器的数控主轴变频驱动项目加减速特性以及定位功能都完全能够适应加工中心的要求,性价比突出