6ES7365-0BA01-0AA0参数详细

6ES7365-0BA01-0AA0参数详细

发布商家
浔之漫智控技术-西门子PLC代理商
联系人
聂航(先生)
电话
15221406036
手机
15221406036
微信
15221406036

6ES7365-0BA01-0AA0参数详细

线路漏电检测方法,漏电检查方法总结,如果一合闸,漏电开关就跳闸,这类属火线漏电,检查方法如下:
  1.把各分开关全断开,合上总闸,逐一合上分开关,合到哪个,漏电开关就跳,就是那路有问题
  2.把电器的插头全拔下,逐一插上电器插头,插到哪个引起跳闸,就是哪个电器有问题
  3.把灯全关了,逐一开灯,开到哪个灯引起跳闸,就是该灯(或线路)有问题
  如果合闸,并不马上跳闸,时间一长,就跳闸,而且跳闸时间不一致,这类属零线漏电,检查方法比较,用兆欧表才行(如果把所有插座上的电器全拔下插头还会跳闸,问题应出在线路上)
  方法:先把主零线拆开,把所有分开关断开,用兆欧表逐一查每路线路零线对地绝缘,找出问题线路后,再看看该专线有哪些电器是直接接线的(比如电灯或某些空调机等),分别查,如果不管电器的事,就是线路出问题了,只能换线。
  电线漏电会产生强大的电磁感线,可以用一个有磁性的针放在纸上,放到测试部位,若针方向发生偏转,说明有电。
  的工具电笔和万用表,家庭线路好装漏电保护器。
  电气线路由于使用年限较长,会引起绝缘老化、绝缘子损坏、绝缘层受潮或磨损等情况,在线路上产生漏电现象。此时在总刀闸上接一只电流表,取下负载,并接通负载开关。
  若电流表指针摆动,说明线路漏电。切断零线;
  若电流表指针不变,说明火线与大地之间漏电;
  若电流表指针回零,说明火线与零线之间漏电;
  若电流表指示变小,但不为零,则表明火线与零线、火线与大地间均有漏电。取下分路熔断器或拉开刀闸,电流表指示不变则表明总线漏电;电流表指示为零说明分路漏电;电流表指示变小,但不为零,则表明总线与分路都漏电。确定好漏电分路后,依次拉断该线路的开关。当拉断到某一开关,电流表指示为零,说明该线路漏电;若变小说明该线路漏电外还有别处也漏电;若所有的开关都拉断,电流表指示不变则表明该线路的干线漏电。

西门子CPU主机6ES7317-2EK14-0AB0

TIA Portal V11 提供了PLC 项目移植的功能,STEP7 V5.4 SP5 和STEP7 V5.5的程序指令,可以通过STEP7 V11的移植工具升级到STEP7 V11。在STEP7 V5.4 SP5编制的RFID程序,可以通过项目移植的方法,转换到STEP7 V11,在Portal V11实现对RFID的操作。

  本例用简单扼要的语言与图示,介绍项目的移植过程,及S7-300 CPU怎样通过DP方式,在STEP7 V11环境下,实现对RFID 的操作。

  本例系统结构如图1:

西门子软件6AV2102-0AA05-0AA7

  使用硬件:

  S7-300 CPU315-2PN/DP V3.2

  ASM456,RFID通信模块,DP从站

  RF340R,RF300读写设备

  RF340T,RF300移动数据载体

  原程序在STEP7 V5.4 SP5生成,项目名称:

  FC45-456

  移植后的STEP7 V11的项目名称:

  FC45-456-11

  软件环境:

  PC操作系统,Win 7, 32位英文版,安装了TIA Portal 的STEP7 Professional V11 SP2,STEP7 V5.5 SP2 英文版。

  1项目移植过程

  打开TIA Portal V11,在“Portal 视图"启动“移植项目"。在“源路径"选择要移植的原STEP7 项目,在“目标"中输入转换后的项目名称和目标路径,点击“移植"。如图2 。

西门子软件6AV2102-0AA05-0AA7

  图2

  移植过程显示移植进度,移植完成时 ,显示一条消息“移植结束",如图3。

西门子软件6AV2102-0AA05-0AA7

  图3

  若移植过程出错,则原程序需要在原编程环境(STEP7)中做一致性检查,确保无错后再做移植。

  2硬件组态及参数配置

  本移植不包括硬件组态,所以,完成项目移植后,需进入TIA Portal 的项目视图进行硬件、DP组态及参数设置。

  双击位于项目树的PLC站的“设备组态",S7-300 CPU显示为未定义状态,选择CPU,通过快捷方式更改设备类型,在S7-300 的设备列表中选择CPU315-2PN/DP V3.2,如图4。

西门子软件6AV2102-0AA05-0AA7

  图4

  选择CPU的MPI/DP口,在其属性窗口定义CPU的MPI/DP口为PROFIBUS类型,地址为2,并添加PROFIBUS_1子网。使用1.5Mbps的传输速率,及其它默认PROFIBUS参数,如图5。

西门子软件6AV2102-0AA05-0AA7

  图5

  进入网络视图,进行PROFIBUS DP组态。

  因为ASM456未集成在TIA Portal的硬件列表中,ASM456的硬件需要通过“选项"菜单的“安装设备的描述文件"即GSD文件进行添加,添加后的ASM456,存放在“其它现场设备"目录中。

西门子软件6AV2102-0AA05-0AA7

  图6

  ASM456 GSD文件下载链接:113562

  将ASM456模块拖放到网络视图,并将其DP口拖到主站网口,以建立PROFIBUS DP网络连接,如图7。

西门子软件6AV2102-0AA05-0AA7

  图7

  双击ASM456进入ASM456的设备视图。如图8,将2个输入/输出字的通信报文插入到ASM456的相应槽位。

西门子软件6AV2102-0AA05-0AA7

  图8

  在ASM456 的属性窗口选择子网PROFIBUS_1,设置DP地址3,与硬件地址设置相同。见图9 。

西门子软件6AV2102-0AA05-0AA7

  图9

  选择“设备专用参数"如图10 。

西门子软件6AV2102-0AA05-0AA7

  图10

  编译存盘,选择项目视图的CPU站,点击下载,DP网络连通。

  3程序检查

  通过移植工具转换过来的程序指令,并非都合符语法要求,需要做程序检查和更新

合理的控制程序取决于正确梯形图的构成,而梯形图形成的优化的方法是通过顺序功能图的转换来实现。首先根据控制过程的要求,给出顺序功能图,然后根据顺序功能图画出梯形图,用图形编程器将梯形图(或转换成指令代码)写入plc
1、顺序功能图描述
顺序功能图(Sequential Function Chart)也称状态转移图,它是描述控制系统的控制过程、功能和特性的一种图形,是设计PLC控制程序的有利工具。它并不涉及所描述的控制功能的具体技术,是一种通用的技术语言,可供进一步设计和不同人员之间进行技术交流。 PLC
(1)SFC的结构
SFC主要由步、有向连线、转换、转换条件和动作(或命令)组成。有单序列、选择序列和并行序列三种基本结构,如图1所示。任何复杂的顺序功能图都可由上述三种序列组合而成。

图1 SFC基本结构
(a)单序列 (b)选择序列 (c)并行序列
图1a所示的单序列由一系列相继激活的步组成,每一步后面仅接一个转换,每一个转换后面只有一步。在图1b所示的选择序列中,序列的开始称为分支,转换条件只能标在水平连线之下,有多少分支就有多少条件,一般只能同时选择一个条件对应的分支序列,序列的结束称为合并,N个选择序列合并到一个公共序列时需要相同数量的转换条件,且其条件只能标在水平连线之上。在图1c所示的并行序列中,其特点是当转换的实现导致几个序列同时被激活(分支),激活后每个序列中活动步的进展将是独立的,当并行序列结束时(合并),只有当合并前的所有前级步(R8、RA)为活动步,且转换条件满足(XB=1)时,才会发生步R8、RA到步RB的进展,为了强调转换的同步实现,在功能图中水平连线用双线表示。 PLC
(2)SFC中转换实现的基本规则
在SFC中,步的活动状态的进展是由转换的实现来完成的。转换的实现必须同时满足下列条件,即该转换所有的前级步都是活动步且相应的转换条件得到满足。转换的实现使所有由有向连线与相应转换符号相连的后续步都变为活动步,而使所有前级步都变为不活动步。以上规则可以用于任意结构中的转换,是设计梯形图的基础。但是,对于不同结构,其区别如下:
在单序列中,一个转换仅有一个前级步和一个后续步。
在并行序列的分支处,转换有几个后续步,在转换实现时应同时将它们变为几个活动步(对应的编程元件置位)。
在并行序列的合并处,转换有几个前级步,它们均为活动步时才有可能实现转换,在转换实现时应将它们变为不活动步(对应的编程元件复位)。
在选择序列的分支与合并处,一个转换实际上也只有一个前级步和一个后续步,但是一个步可能有多个前级步或多个后续步,只能选择其一。
2、梯形图的编制
根据SFC设计梯形图时,通常用编程元件代表步。当某步为活动步时,对应的编程元件为“1”态,当该步之后的转换条件满足时,转换条件对应的触点或电路接通,因此可以将该触点或电路与代表前级步的编程元件的常开触点串联,作为与转换实现的两个条件同时满足对应的电路,当此电路接通时应使代表前级步的编程元件复位,同时使代表后续步的编程元件置位(变为“1”态)并保持,即起保停电路。图2是图1b所示选择序列功能图对应的梯形图。在图2中R3之后有一个选择序列的分支,设步R3是活动步,当它的后续步R4或R5变为活动步时,它都应将R3变为不活动步(“0”态),所以应将R4和R5的常闭触点与R3的线圈串联。步R6之前有一个选择序列的合并,当步R3是活动步且转换条件X6满足,或者步R5是活动步且转换条件X7满足,步R6都应为活动步,对应的起动电路由两条并联支路组成,每条支路分别由R4、X6和R5、X7的常开触点串联而成。并行序列和上述选择序列梯形图的编制有所不同,在图1c中,步R7之后有一个并行序列的分支,当步R7是活动步且转换条件X9满足,步R8、R9应同时变为活动步,这时用R7和X9的常开触点串联作为R8、R9的起动电路,与此同时步R7应变为不活动步,所以只需将R8或R9的常闭触点与R7的线圈串联即可。对于并行序列的合并(步RB之前),该转换实现的条件是所有的前级步(步R8、R9)都是活动步和XB条件满足。由此可知,应将R8、R9和XB的常开触点串联,作为控制RB的起保停电路的起动电路。

图2 图1b所对应的梯形图

图3是采用一台日本松下F0C14RS控制单元和一台E16RS扩展单元PLC控制一台轮胎内胎硫化机的顺序功能图。它包含有跳步、循环、选择序列等基本环节,一周期由初始、合模、反料、硫化、放气、开模以及报警等七步组成。它们与辅助继电器R10~R16相对应。在反料和硫化阶段,Y2接通,蒸气进入模具。在放气阶段,Y2断开,放出蒸气。反料阶段允许打开模具,硫化阶段则不允许。急停按扭X0可以停止开模操作,也可以将合模改为开模。

图3 实例控制顺序功能图
由图3可知,初始状态步R10有两个前级步(R15、R16)和一个起动信号R9013(PLC开始运行时应将R10置为“1”态,否则系统无法工作,所以将R9013初始闭合继电器作为起动信号,即R9013只在程序运行中次扫描时合上,从第二次扫描开始断开并保持断开状态),因此,R10的起动电路由三条支路并联而成,其起保停电路的逻辑表达式为:
PLC

其他各步起保停电路按照梯形图设计规则依此类推,可得到图4所示梯形图。

图4 实例梯形图


人气
47
发布时间
2023-07-10 00:36
所属行业
PLC
编号
40038064
我公司的其他供应信息
相关6es7365产品
拨打电话
微信咨询
请卖家联系我