近年来,为实现清洁、高效利用煤炭生产,以煤气化为核心的新型煤化工项目,如煤制天然气已成为我国能源领域的研究热点和发展重点。在煤制天然气过程中,Lurgi固定床加压气化产生的合成气在洗涤、冷却、净化过程中产生大量的煤气化废水。其含酚为5000~14000mg/L,NH4+-N为4500~13000mg/L,COD为20000~55000mg/L。另外,还存在大量的杂环化合物,如吡啶、喹啉等以及单环、多环芳烃。这些物质的存在使得废水的生物毒性增大,抑制了生化细菌的活性,降低了废水的可生化性。此类废水的处理是水处理领域的一个难题,也是制约新型煤化工行业发展的重要因素之一。
针对含酚废水,国内外一般采用溶剂萃取法。目前已工业化的酚氨回收工艺有:鲁奇PhenosolvanCLL工艺、赛鼎脱酸-脱酚-脱氨工艺、华南理工大学单塔脱酸脱氨-脱酚工艺。鲁奇PhenosolvanCLL工艺是先酸化,再萃取脱酚,酸化的目的是降低废水的pH,以便于酚萃取,萃取脱酚后汽提脱酸性气和氨。该工艺流程复杂,塔设备多,需要较大的投资。赛鼎脱酸-脱酚-脱氨工艺是含酚废水先脱酸,再萃取脱酚,然后进入脱氨过程。处理后的废水中酚大于1000mg/L,COD为5000~6000mg/L,远高于生化进水要求,处理困难。
华南理工大学针对Lurgi工艺酚、COD脱除率低的问题,开发了单塔脱酸脱氨-脱酚新工艺:原料水经单塔加压同时脱酸脱氨,pH达到7以下,后经甲基异丁基酮(MIBK)萃取脱酚,再精馏回收萃取剂MIBK。该工艺使处理后的废水中总酚可以降到350mg/L左右,COD降至2000mg/L左右,可进入后续生化处理。但该流程中有3个精馏塔:污水汽提塔、溶剂回收塔和溶剂汽提塔。这些精馏塔能耗高,需要高品级的蒸汽来加热塔底再沸器,所需蒸汽的压力分别为1.0、2.5、0.5MPaG(表压)。对应的废水处理量为100t/h,所需蒸汽热负荷分别为10.17、1.97、2.68MW。该工艺的不足之处还在于,脱酸脱氨塔侧线粗氨产品中的酚达到了100~200mg/L。,虽该工艺具有高脱酸脱氨效率,但能量消耗大,粗氨产品中单元酚质量浓度高。
针对该工艺所存在的问题,本研究以高含酚煤气化废水为研究对象,结合酚氨回收工艺的技术特点,开发了一种新型萃取剂乙酸辛酯并提出酸化萃取—脱酸脱氨—溶剂回收的酚氨回收新工艺。该工艺中,新萃取剂乙酸辛酯损失量低,不必设置水塔,还利用碱反萃工艺回收溶剂,使得蒸汽消耗量减少、能耗降低;根据汽液相平衡原理,脱酸脱氨塔的后置使得粗氨产品中酚质量浓度降低。
1、废水组分简化
煤气化废水实际组成非常复杂,体系中包含CO2、H2S、NH4+-N、水、单元酚、多元酚、稠环芳烃、杂环化合物、脂肪酸等物质,且含量波动较大,pH约在8~10之间。本研究对模拟废水的组分进行简化,用苯酚代表单元酚,用对苯二酚和间苯二酚代表多元酚,脂肪酸、杂环化合物等可以忽略。原料污水的基本组成见表1。
2、新流程的概念设计
酸化萃取—脱酸脱氨—溶剂回收的酚氨回收新工艺流程示意见图1。
将高含酚、NH4+-N和高COD的原料污水送入CO2酸化塔,酸化后塔釜液送入萃取塔,与萃取剂乙酸辛酯进行两相4级逆流萃取。萃取相送入碱反萃单元,塔顶回收萃取剂而后送入萃取剂循环槽待回用,塔底液送入酚分离、精制单元,得到酚产品。萃余相分冷、热两股送入脱酸脱氨塔,塔顶采酸性气,部分送CO2酸化塔回用,侧线抽出的富氨气送三级分凝,釜液去生化处理单元。
该概念流程的技术创新点为:
(1)脱酸脱氨塔脱除的CO2回用至CO2酸化塔酸化废水,使废水pH降至8以下,使得萃取条件更佳,酚等有毒难降解有机物脱除效率更高;
(2)以乙酸辛酯作为萃取剂,可不设置水塔回收水溶或夹带的萃取剂,有节能优势且相较于二异丙醚(DIPE)具有更高的酚脱除效率。利用碱反萃回收溶剂,可减少低压蒸汽的消耗,减少能耗;
(3)萃取脱酚-脱酸脱氨工艺,使得脱酸脱氨后的粗氨产品中酚的质量浓度更低。
3、新流程的技术关键
3.1 CO2酸化萃取
酚属于弱电解质,存在电离平衡。当废水呈酸性时,酚的电离平衡向左移动,即酚的电离受到抑制。溶剂萃取脱酚过程中,由水相进入有机相的是分子形态的酚,离子态形式的酚则留在水中。所以,酚的离解程度越大,酚类物质进入有机相的量就越小,溶剂对酚的萃取效果就越差,即酚的电离抑制溶剂萃取脱酚。因此含酚废水的萃取更适合在酸性或者中性条件下进行。