作为将机械运动转换为电信号的器件,编码器可为工程师提供位置、速度、距离和方向等基本数据,用以优化整个系统的性能。
光学式、磁式和电容式是可供工程师使用的三种主要编码器技术。
要确定哪种技术最适合最终应用,还需要考虑一些因素。
本文将概述光学式、磁式和电容式三种编码器技术,并且略述各种技术的利弊权衡。
光电编码器
多年来,光学编码器一直都是运动控制应用市场的热门选择。它由 LED 光源(通常是红外光源)和光电探测器组成,二者分别位于编码器码盘两侧。
码盘由塑料或玻璃制成,上面间隔排列着一系列透光和不透光的线或槽。
码盘旋转时,LED 光路被码盘上间隔排列的线或槽阻断,从而产生两路典型的方波 A 和 B 正交脉冲,可用于确定轴的旋转和速度。

光学编码器应用广泛,但仍有几点缺陷,在工业应用等多尘且肮脏的环境中,污染物会堆积在码盘上,从而阻碍 LED 光透射到光学传感器。
由于受污染的码盘可能会导致方波不连续或完全丢失,极大地影响了光学编码器的可靠性和精度。
LED 的使用寿命有限,最终总会烧坏,从而导致编码器故障。
玻璃或塑料码盘容易因振动或极端温度而损坏,限制了光学编码器在恶劣环境应用中的适用范围;将其组装到电机上不仅耗时,受污染的风险更大。
最后,如果光学编码器的分辨率较高,则会消耗 100 mA 以上的电流,影响了它应用于移动设备或电池供电设备。
磁性编码器
磁性编码器的结构与光学编码器类似,但它利用的是磁场,而非光束。
磁性编码器使用磁性码盘替代带槽光电码盘,磁性码盘上带有间隔排列的磁极,并在一列霍尔效应传感器或磁阻传感器上旋转。
码盘的任何转动都会使这些传感器产生响应,而产生的信号将传输至信号调理前端电路以确定轴的位置。
相较于光学编码器,磁性编码器的优势在于更耐用、抗振和抗冲击。
在遇到灰尘、污垢和油渍等污染物的情况下,光学编码器的性能会大打折扣,磁性编码器却不受影响,非常适合恶劣环境应用。
电机(尤其是步进电机)产生的电磁干扰会对磁性编码器造成极大的影响,并且温度变化也会使其产生位置漂移。
磁性编码器的分辨率和精度相对较低,远不及光学和电容式编码器。
电容式编码器
电容式编码器主要由三部分组成:转子、固定发射器和固定接收器。
电容感应使用条状或线状纹路,一极位于固定元件上,另一极位于活动元件上,以构成可变电容器,并配置成一对接收器/发射器。
转子上蚀刻了正弦波纹路,随着电机轴的转动,这种纹路可产生特殊但可预测的信号。
随后,该信号经由编码器的板载 ASIC 转换,以计算轴的位置和旋转方向。