西门子6ES7214-1AF40-0XB0
莫尔圆表明切应力的大值与处于拉伸状态的主应力的大值是相等的,并且与梁的中性轴成45°方向。应变计是测量主应力产生的应变,因此应变计也同样应与中性轴成45°,如图6所示。此图同样表明一个没有载荷作用的平面部分正方形单元,当有载荷作用时正方形会变成菱形,使得一个应变计处于拉伸状态,而另一个应变计处于压缩状态。请注意应力是双轴的,其处于拉伸状态的主应力的轴向应变值不但与St成正比,而且随泊松比μSc而增加:
式中:e1—应变计1的测量应变。
—单轴向范围内的基准应变,=S/Em。
μ—泊松比。
电桥各桥臂上的应变计承受同样的应变值,所以利用电桥总应变公式,可写为:
因为
所以 N=4(1+μ)
泊斯特(Purest)会议有学者认为这是不符合规则的,因为e1`并没有真实的存在,但是它确实提供了正确的答案,并在N值计算中有它是很方便的。用于计算所要求的可以提供所需输出的应变算公式(6)可变为:
计算出所要求的单轴应变e1`后,应力通过公式(9)获得,即
能否准确计算出称重传感器上的应力,因切应力的种类和弹性体的结构不同而产生很大的差异。例如,一个承受纯剪切应力状态的扭转轴,其切应力计算可由下面典型的公式得出:
式中:Ss—切应力(与主应力的大值相等)。
T—轴上的扭矩。
r—轴的半径。
J—横截面极惯性矩。
另一方面,直接利用剪切载荷准确的确定称重传感器上的切应力是极为困难的。对于剪切型轴销式称重传感器更是如此,下面列举了一些不够**的原因:
(A)应变计是通过其栅长测量的是应变区的平均应变。如果在应变区内切应力的变化曲线非常陡,且应变计尺寸非常大,所测量的应变值就会比峰值小。
(B)大切应力只用了直接作用于其上的大剪切载荷的一部分。公式假设剪切载荷在一个已知的面积内,从底部到顶部较均匀分布,且切应力大值均匀分布在中性轴上。
(C)称重传感器上的载荷分布还应与安装接头的影响相吻合,如剪切型轴销式称重传感器,其载荷分布取决于轴销与安装接头两者之间的公差,所受载荷由于安装间隙不同而异。
我们将讨论三种切应力称重传感器。准确计算为保证所需输出的弹性体尺寸,与以前所用的程序完全一样。首**行粗略计算,后给出准确结果。切应力称重传感器尺寸大小的计算准确率,不如圆柱、弯曲和扭转型称重传感器。
工字形截面切应力称重传感器
普通的用于计算切应力的公式为:
式中:Sa—平均切应力。
V—剪切载荷。
A—受剪部分的截面积。
这个公式可以用来计算破坏载荷,但不能给出弹性体粘贴应变计处中性轴上切应力的大值。对于切应力的大值的计算公式,应随着受剪截面的形状不同而变化。
图7 S形剪切式称重传感器
图7是另一个S形称重传感器简图,除了利用剪切应力代替弯曲应力外,其它均无变化。图中A-A截面对于两个轴都是对称的,从侧面角度看呈现两倍的尺寸关系。应变计粘贴在工字形截面的腹板上,其截面尺寸为b、c、d、f和t。根据上述给定的尺寸,按计算程序计算出腹板的厚度t。
下列中性轴切应力Ss大值计算公式,引自参考文献[1]第91页公式(2),即
式中:V—剪力。
t—腹板厚度。
A′—中性轴以上横截面面积。
Z′—从中性轴到面积A′形心的距离。
A′Z′=A1Z1+A2Z2
A1Z1—中性轴以上翼缘面积乘以中性轴到翼缘形心的距离,依照图7,A1Z1=fb(d+f/2)。
A2Z2—中性轴以上腹板的面积乘以中性轴到腹板形心的距离,A2Z2=td×(d/2)。
J—中性轴以上截面的惯性矩
例如图7中的称重传感器,假设所需的输出是3.0mv/v,弹性体由17—4PH不锈钢制成,Em=29.1×106磅/英寸2,μ=0.29,利用公式(6)、(9)及N=4(1+μ),求得应力为33800磅/英寸2,其中E0/Ei=3.0mv/m,Gf=2.0,假设所给的载荷及尺寸如下:
P=V=15000磅,d=0.80英寸,f=0.20英寸,c=1.00英寸,b=1.50英寸。把这些数值代入公式(14),即可得到一个有关t的二次方程式,解此方程求得t=0.273英寸。
为确定强度,还需要其它尺寸大小,例如确定承受载荷螺纹的允许直径,符合螺纹外径要求的宽度b一定要足够大等。图中A-A部分的箭头指向是高弯曲应力与拉伸应力合二为一的结合面,必须具有足够大的强度才能安全的承受载荷。粘贴有应变计的腹板两侧的盲孔部分可以是方形、矩形,也可以是圆形使得加工简单。据估计称重传感器任意部分的应力都比应变计处的应力小。
工字形截面切应力称重传感器的误差来源
依照惯例,当计算工字梁的应力时,假设腹板承受所有载荷。如果我们采用这种方法,那么将利用平均应力Sα=V/A的计算公式来确定腹板的厚度。采用上面的例子,承受载荷的腹板截面面积是A=2ct,又因为A=V/Sα,则腹板厚度t计算如下:
此值比通过公式(14)得出的t值小18%,尽管公式(14)略显繁琐,但对于不同的截面形状,它的计算是比较准确的。
轮辐式称重传感器
图8是一个轮辐式称重传感器简图,这种设计是为了生产高准确度的称重传感器。
图8 轮辐式称重传感器
粘贴应变计的轮辐是一个矩形截面梁,通常高度h比宽度b长一些。把公式(14)应用于矩形截面见参考文献[1]第92页公式(3),得出切应力计算公式如下:
式中:V—剪力,V=P/4。
a—形状系数。
A—矩形截面的面积,A=bh。
轮辐式称重传感器的误差来源
参考文献[1]指出,对于矩形截面其形状系数a=3/2,但是如前所述终的输出是几个因素共同作用形成的。比较截面的高度,及截面的宽度与高度比,我的经验是a随着应变计的尺寸变化而变化。现举例说明,一个200000磅的称重传感器,截面高度h为2.386英寸,宽度b为1.172英寸。这么大的高度解决了通过应变计基长测量平均应变的问题,因为应变计基长只有1/8英寸。形状系数a为1.25,并不是参考文献[1]中所述的1.50,表1给出了a的数值。
表1 形状系数a值
建议设计者形状系数好选取1.25,组装一台称重传感器样件,校准所需要的截面面积。一旦在样件上建立了准确的计算模型,调整截面的宽度,就可以求得所需要的输出值,然后再组装一台称重传感器样件,并进行校核以确定终输出。
图8给出了8片应变计的情况,应变计1A和1B串联,作为图1中的应变计1;应变计2A和2B串联作为图1中的应变计2,如此等等,这种联结组桥方式提供了**的称重传感器。但是采用4片应变计的称重传感器价格会低一些,只是准确度为中等水平。4片应变计可粘贴在图8中1A、1B、3A和3B的位置上。购买的应变计应具有与中性轴成45°或135°的敏感栅,选择一个具有适当方向敏感栅的应变计是非常重要的。参考图6确定应变计的粘贴位置,使2片应变计处于拉伸状态,而另外2片应变计处于压缩状态。
较大量程的轮辐式称重传感器,例如容量超过200000磅(90718kg)时,会出现较大的滞后误差。这已形成了理论,即滞后误差是在泊松比作用下,在轮辐受载过程中轮箍底部产生向外移动的力,从而形成力矩。由于存在摩擦力,轮箍移出时的力矩与移回时的力矩是不同的,因而产生滞后。处于压缩状态的大型柱式称重传感器不会出现滞后现象,所以,既然大多数用户都希望轮辐式称重传感器的设计会提供**的结果,那么轮辐式称重传感器的大容量好限定为200000磅之内。
轴销剪切式称重传感器
图9是在一个吊环内装有轴销剪切式称重传感器的简图,这个组合表明切应力称重传感器应用的多样性和广泛性。本文展示的这台轴销剪切式称重传感器取自生产厂家的产品目录,见参考文献[4]。
1.承载卷筒,2. 挂钩或吊链,3. U形吊环,
4. 剪切轴销,5. 凹陷部分连线插头
图9 轴销剪切式称重传感器
应变计粘贴在轴销上的直径d为1/8英寸到1/2英寸的圆孔内,并处于有凹槽的位置上。应变计的粘贴位置必须准确,这项工作应该由一名熟练的机械师利用特殊的工具完成。
参考文献[5]详尽的讨论了轴销剪切式称重传感器,如果对制造类似的称重传感器有兴趣,建议读者重新读一下那篇文章。计算轴销上切应力的公式选自参考文献[1],在参考文献[5]中也给出了计算公式。此作者的研究展示了初始原型的真实应力,它与计算公式有着非常大的差异。例如需要为所计算的弹性体提供1.0mv/v的输出时,那么直径小的轴销切应力大约是11500磅/英寸2,而要求弹性体提供相同的输出时,直径大的轴销切应力却是7500磅/英寸2。称重传感器的输出受很多因素影响,比如说穿过中心孔的直径d,凹槽的直径D,轴销与支撑之间的间隙,支撑的硬度,应变计的尺寸等。可以被利用计算轴销剪切式称重传感器输出的好公式是(15)式,其中形状系数a在1.5到2.0之间变化。
表1列举了经试验得出的a的一些数值,凹槽直径D从1.0到3.0之间变化,轴销是钢制的,称重传感器的输出灵敏度为2.0mv/v,而中间孔的直径d为0.50英寸。
轴销剪切式称重传感器的误差来源及设计建议
参考文献[5]指出“当几何形状没有问题时,传统的称重传感器要优于轴销剪切式称重传感器”。轴销剪切式称重传感器在具体应用中,有很多误差来源,归纳起来主要有:
(A)为了具有好的重复性和小的滞后误差,轴销剪切式称重传感器的输出灵敏度应设计为1.00mv/v,所以当轴销受载时,不会因椭圆变形在轴销中引起较大的弯曲应力,这就增加了安全载荷和疲劳寿命。
(B)轴销的凹槽必须是应变计敏感栅宽度的2倍。但是,如果凹槽过宽,当轴销受载时就会产生较大的弯曲应力而引起误差,同时也降低了安全载荷。参考文献[5]提供了有关凹槽宽度的设计建议。
(C)轴销与支撑之间的间隙应尽量小一些,以减少弯曲变形。当轴销的直径为1.0英寸时,大间隙为0.004英寸;当直径为4.0英寸时,大间隙为0.007英寸。如图9中吊环式称重传感器的情况,要求吊环为轴销提供紧密的配合。
(D)支撑应具有足够的刚度来抵抗弯曲变形,越刚硬越好。测试与校准轴销时,应该与实际安装使用时是同一个支撑。
(E)在使用寿命内,如果轴销需要承受冲击载荷或许多循环载荷时,凹槽就需要有足够大的半径。另外,如果轴销要在很冷的天气(0°以下)工作并承受冲击载荷时,就不要选用较脆的钢种如17-4PH来制造轴销。
(F)与轮辐式称重传感器相似,大型轴销剪切式称重传感器(200000磅或更高)会出现滞后误差。一个二百万磅的轴销剪切式称重传感器的滞后误差大约是1.0%到3.0%,为了减小(并不是消除)这一误差,所有大型切应力称重传感器都应该将输出灵敏度限制在1.00mv/v之内。
(G)如果公式(15)被应用于实心轴销剪切式称重传感器时,形状系数a是一个常数4/3或是1.33,这个公式假设大切应力均匀分布在轴销的中性轴上。
(H)由四只称重传感器组装的承载器,每个称重传感器必须具有相同的输出灵敏度。如果一只称重传感器的输出灵敏度是3.0mv/v其它几只的输出灵敏度也应该是3.0mv/v。如果不具备这一特点,任何一个偏于承载器的载荷都会得到不同的测量结果。一个轴销就是一台电子衡器,由两个称重传感器并联组成(每个槽内有一只称重传感器),如果输出灵敏度不同,测量结果就会随着偏心载荷的不同而变化。图8中的中心通孔就是用来把外载荷集中于称重传感器中心而设计的。
结语
本篇论文是基于对称重传感器设计者能有所帮助而写的,它提供了一些公式,这些公式可用于计算称重传感器上的某个尺寸的大小,并提供所需要的其它计算结果。它同样介绍了用于计算圆柱式结构称重传感器输出的公式(通常被用于航空工业)。
本篇论文全面介绍了称重传感器的误差来源和设计建议。但是应该强调的是影响称重传感器个样件输出的尺寸计算误差,应该在生产第二个样件前对这一尺寸进行更正。
本篇论文中的电桥电路(图1)并没有串入温度补偿电阻。例如应变计的灵敏系数、绝大多数材料的弹性模量都随着温度的变化而变化,所以称重传感器的输出灵敏度也随着变化,这个误差在商用称重传感器中通常是被补偿的。在商用称重传感器中电桥串联了温度补偿电阻,当温度变化时,补偿电阻会进行补偿。如果称重传感器串入了灵敏度温度补偿电阻,对于一个给定的输入电压,输出一定是一个符合要求的标准值。考虑到补偿电阻将减少输出值,所以设计的电桥输出值一定要比标准值高。表2是本篇论文所介绍公式的总结。
表2 称重传感器计算公式
注释1、在全部公式中假设应力是单向的并且符合虎克定律,或者是应用公式将应力转换为应变或是相反将应变转换为应力,即S=eEm或e=S/Em。
注释2、为了得到需要求得的尺寸重新整理了公式。
注释3、用在公式(5)中代入N的方法求得输出值。