西门子模块6ES7510-1SJ01-0AB0

西门子模块6ES7510-1SJ01-0AB0

发布商家
浔之漫智控技术-西门子PLC代理商
联系人
聂航(先生)
电话
15221406036
手机
15221406036
微信
15221406036
价格
¥666.00/件

西门子模块6ES7510-1SJ01-0AB0

一、前言
  自我国条年产400万m2连续自动化纸面石膏板生产线1978年投入工业性生产以来,我国广大纸面石膏板行业的技术人员经过二十多年的努力,在实现我国纸面石膏板生产线系列化、大型化、自动化方面做了大量工作,又成功开发了年产3000万m2的纸面石膏板生产线。本文从3000万m2纸面石膏板生产线的电控系统方面作一介绍。
  
  二、系统概述
  年产3000万m2纸面石膏板生产线(主线)电控系统按照生产工艺特点和生产线布置情况主要分为配料与成型工段、切断与干燥工段、成品输送工段和上位机四部分。各个工段的下位机PLC通过现场总线与变频器、伺服控制器通讯。同时PLC、人机界面HMI与上位机部分通过工业以太网联接,形成一个完整的生产控制系统。
  
  配置图例:


  1.配料与成型工段
  本工段主要包括配料、成型和主线速度三部分的控制,它们之间是相对独立但又相互联系的。控制系统由下位机PLC、人机界面HMI和变频器组成。PLC系统由一套SLC5/05主机架及一套扩展机架组成,PLC与变频器之间通过现场总线Devicenet通讯,PLC与HMI和上位机之间通过工业以太网进行通讯。本控制装置由两个控制柜,六个现场操作箱及一些就地按钮盒组成,即1C1成型控制柜、1C2配料控制柜、1B~3B皮带和输送辊道现场操作箱、4B板厚调节操作箱、1A1上接纸操作箱、1A2下接纸操作箱、及就地电机启停按钮盒和紧停按钮盒。同时属本控制系统但随工艺设备附带的电控设备有:1C3皮带秤控制柜,609C1上纠偏操作箱,609C2下纠偏控制箱,CH2~4收尘控制箱等。
  石膏板配料分为干料、湿料两部分。干料配料控制部分主要是建筑石膏粉、添加剂、淀粉、促凝剂、发泡剂以及水和纸浆混合液的给定控制和自动调节,配料量与成型速度成比例,其配比保持不变。建筑石膏粉的给料控制是由螺旋闸板、叶轮给料机、螺旋输送机、斗式**机、计量皮带秤完成的。配料系统启动后,PLC按照工艺要求启停和调节各个电机的速度,同时通过人机界面设定其给料量,PLC的模拟量输出模块输出4~20mA的给定信号给计量皮带秤,皮带秤即按照给定信号控制给料速度,同时皮带秤将给料的瞬时量和累计量传送回PLC,通过通讯将它们在人机界面和上位机上显示,使得操作人员和管理人员可以分别在线监控,及时按照工艺要求调整给料量。添加剂、淀粉和促凝剂的给料控制基本一致,给料控制由调速螺旋输送机、搅拌电机、叶轮给料机、斗式**机等组成。控制方式与建筑石膏粉基本一致,只是PLC的模拟量输出模块输出的4~20mA给定信号直接给调速螺旋输送机,根据人机界面设定的配方PLC自动调节螺旋输送机的给料速度。以上经过配比的粉料分别进入螺旋输送机、混合螺旋输送机,通过输送后进入立式搅拌机与浆料搅拌,充分搅拌后进入下一步成型工序。 
  湿料主要有纸浆、发泡剂、水及添加剂等。其控制装置包括水力碎浆机、碎浆螺杆机、搅拌水泵、纸浆搅拌机、纸浆螺杆泵、发泡剂上料泵、发泡剂输送泵、发泡剂螺杆泵、硅油上料泵、硅油输送泵等。根据人机界面设定的配比,PLC的模拟量输出模块输出的4~20mA给定信号给各种浆料的计量泵控制浆料的输出,同时PLC根据各自的**计信号反馈,自动调节模拟量给定信号,形成闭环控制。各种粉料和浆料都有料位或液位指示反馈信号,按照工艺要求联锁控制各个配料工序。
  成型控制部分主要是石膏板湿板的成型,控制设备主要由成型台、纸卷**装置、上下纸的接纸台、储纸机、拉出装置、张紧装置、切纸装置、纠偏装置、压痕机、边部加热器、立式搅拌机、振动台等组成。正常生产时,储纸机的升降辊处于上部极限位置,储纸机内存有一定的护面纸,拉出装置由变频电机驱动把护面纸从储纸机中拉引出来,在拉出装置的补偿辊边装有一套拉出张力检测系统,它的信号作为张力反馈来调节拉出电机的速度。当纸卷快要用完时,进行接纸操作。接纸时,储纸辊接纸电磁制动器将入纸辊抱住,同时接纸辊放下压紧入纸辊将纸板夹住完成接纸。立式搅拌机由一台主搅拌电机和两台硬边搅拌电机组成,配料系统输送来的混合料经过充分搅拌从搅拌机出料口送入振动台,经过振动辊的高速振动使浆料均匀铺开后再进入成型装置。成型装置由一套成型机构、板厚调节电机、位置光电编码器组成。正常生产时,成型板下落在已经调好的板厚高度上,上下纸和浆料从成型台中通过,石膏板湿板成型完成。板厚是通过现场操作箱上的按钮来调节,箱上装有厚度显示表来显示成型板左右两边的产品厚度,操作工可手动调节。
  主线是由两台凝固皮带和一段输送辊道组成,这三台设备需要线速度同步。考虑到伺服驱动成本太高,生产线控制精度要求也不是非常苛刻,所以采用交流变频驱动装置闭环控制。PLC经过PID运算得出每台设备的给定值,然后通过Devicenet通讯将速度给定以数字量的型式传送给每台变频器,实现速度的同步控制。
         

  2.切断与干燥工段:
  本工段主要包括切断、横向输送、入窑和干燥窑四部分的控制。控制系统由PLC、HMI、变频器和伺服控制器组成。PLC系统由一套SLC5/05主机架及两套扩展机架组成,PLC与变频器和伺服控制器之间通过现场总线Devicenet通讯,PLC与HMI和上位机之间通过工业以太网进行通讯。本控制装置由九个控制柜,一个现场操作台,一个现场操作箱及一些就地按钮盒组成,即2C1横向及仪表控制柜、2C2翻板控制柜、2C3入窑控制柜、2C4~2C6风机控制柜、2C7主传动控制柜、2C8油泵控制柜、2C9切断控制柜、2T现场操作台、2A切断现场操作箱及就地电机启停按钮盒和紧停按钮盒。
  切断控制部分完成石膏板湿板经初凝后的板长切断,切断控制柜根据2T操作台上的HMI设置的切断长度,自动完成石膏板的连续切割,精度要求正负1mm。控制装置包括装有上下切割转轂的切断机、交流伺服驱动装置、单独控制切断的PLC、测长测速编码器、角位移光电编码器等。伺服驱动装置采用内置电子凸轮的控制器,可实现复杂轮廓曲线的加工。但考虑到其只能同时编程有限条凸轮曲线,不能完全实现任意切割长度的工艺要求,所以将它作为**的速度内环控制,整个切断的控制算法由单独的PLC完成。这样由测长测速编码器、角位移光电编码器构成的位置控制外环,和由伺服控制器构成的速度控制内环就完全可以达到工艺精度要求,当然主线的速度波动要控制在一定的范围之内,这牵涉到控制系统鲁棒性的问题。同时切断控制柜还要完成一些手动干预的操作,比如手动剪切、手动回零、采样剪切及与进板辊道控制的一些联锁控制要求。
  横向输送控制部分主要完成切断后的石膏板加速、进板、翻板、横向输送和出板的控制。首先,由于主线的速度非常快,切断后的石膏板必须按照工艺节拍成组地经加速辊道输送到进板辊道。加速辊道上的石膏板块数在未达到板组数时,加速辊道变频电机通过通讯按照配料与成型工段传输过来的主线速度同步运行,在达到板组数后加速到高速状态,与进板辊道保持同步。等到当前板组的后一块石膏板完全进入进板辊道后,加速辊道重新切换至与主线同步,开始新的一次板组循环。进板辊道载有一组石膏板后,在指定位置制动停车,进板辊道的辊架下落,由条输送皮带将石膏板横向拉出,然后进板辊道的辊架上升、辊道加速到高速,等待下一组石膏板的到来;同时翻板机构将石膏板从条横向输送皮带翻转到第二条横向输送皮带上,第二条皮带再将石膏板输送到指定位置抱闸停车,等待下一个板组的到来。当下一组石膏板经翻转也在第二条皮带上后,第二、三条横向输送皮带同时动作,将两组石膏板同时送入出板辊道,接着出板辊道辊架抬起,辊道加速至高速,经靠拢辊道将两组石膏板整齐地送入入窑部分,至此横向输送控制完成。
  入窑部分是将成组的石膏板按照预定的顺序送入干燥窑。控制装置由分配桥升降电机、分配桥输送电机、干燥窑各层的输送电机组成。首先分配桥升降电机停在预定的层上,当石膏板经分配桥输送电机进入干燥窑时,对应层的输送电机启动,将石膏板输送到恰当位置后停车,随后石膏板就由干燥窑主传动电机带动缓缓进入干燥窑;同时分配桥升降电机由轴后的值编码器定位,**停止于下一待进板的层上。
  干燥窑共分三个区,每个区均通过导热油经热交换器加热循环空气,再通过循环空气在干燥窑内蒸发石膏板中的水分。在温度控制方面,用PLC取代了传统的仪表控制,干燥窑每个区的循环空气入口和出口温度的测量值送到PLC,每个区的湿度测量值也送到PLC,经过一定的算法PLC控制各自的导热油调节阀,以满足每个区工艺参数要求。同时通过2T操作台上的HMI,可以非常方便的集中修正各个调节阀的PID参数、手自动运行和手操器的动作。干燥窑主传动电机的速度是根据生产线主线速度和干燥窑每个区的实际工艺运行参数自动调节的。另外由于每台风机电机的功率都非常大,所以均采用软启动器控制启停。
  
  3.成品输送工段:
  本工段主要包括出窑、成品输送和堆垛三部分的控制,控制系统由PLC、HMI、变频器组成。PLC系统由一套SLC5/05主机架及两套扩展机架组成,PLC与HMI和上位机之间通过工业以太网进行通讯。本控制装置由两个控制柜,一个现场操作台,三个现场操作箱及一些就地按钮盒组成。即3C1出窑控制柜、3C2输送和堆垛控制柜、3T现场操作台、3A1横向机行走机构操作箱、3A2切边操作箱、3A3堆垛操作箱及就地电机启停按钮盒和紧停按钮盒。
  出窑部分控制烘干后的石膏板从干燥窑输出的顺序,控制装置由各出板层的输送电机、出窑挡板、电磁离合器及若干输送皮带组成。出窑部分主要控制要求是先到先出的原则,所以在PLC中要实现一个带使能控制的具有动态存储功能的先到先出FIFO队列,这样就可以用现场紧停按钮来实现使能控制,当出窑部分之后的设备发生短暂故障时,通过紧停也能保障FIFO队列的顺利运行,为故障的排除赢得宝贵的时间。
  成品输送部分由横向机、储存辊道、合片机和切边机组成。干燥窑的每层出板总是左右两块板一起输出,石膏板经出窑段和中间过渡的输送皮带进入横向机。经过横向机挡板的控制,石膏板横向输送,进入储存辊道。储存辊道的作用是控制石膏板进入合片机的节拍,当两片石膏板同时进入合片机后进行合片操作,目的是将两片石膏板重叠后同时送入切边机切边,后将两片成品石膏板推入成品辊道。
  堆垛部分由左右两个堆垛台组成。切边后的成品石膏板可以分别进入左右两个成品辊道,石膏板进入成品辊道后由推板装置将其推入堆垛台,纵向和横向对准电磁阀将堆垛台上的石膏板前后对齐,然后堆垛台自动下降一定的高度等待下一次堆垛。当堆垛台上的石膏板达到预设的数量时,程序自动将其后的石膏板送入另一台堆垛机,而当前堆垛台声光报警,等待叉车将石膏板运走,然后堆垛台上升至合适高度准备重新投入堆垛。至此已经完成从石膏粉原料到成品石膏板的整个生产过程。
  
  4.上位机部分:
  上位机部分选用RS VIEW作为监控软件平台,对整个生产流程进行监控。RS VIEW是Rockwell公司推出的一种开放式软件,以bbbbbbs操作系统为平台,具有流程图绘制、报警计录、报表打印、趋势曲线等多种功能,并支持第三方制造商的通讯协议。上位监控软件的设计与构成:用户登陆与管理;主控画面和各个工段画面,其中包括各个工序的动画显示、参数设定;故障报警汇总;实时数据曲线等。
  上位机监控系统投入运行后,生产现场的工艺和设备运行状况一目了然,监控效果非常良好。操作人员不仅能很方便的观察和掌握生产线运行情况,还可以根据生产情况及时快捷地修改工艺参数,使生产调控变得轻松自如。设备维护人员还可以借助历史趋势曲线的调看,分析和查找设备故障原因、快速排除故障,**设备的运营率。整个监控系统使生产过程集中显示于操作者及管理者面前,极大地**了调度和决策效率,有力地促进了企业的生产管理水平。
   

  三、总结
  以上介绍的电控技术,经过了几条生产线的检验,我国自行设计开发的首条年产3000万m2纸面石膏板生产线于2004年底在山东枣庄成功投入运行,之后同样规模的生产线又将在泰安、常州、宁波等地陆续投产。该生产线总体装备和控制水平已接近或达到当前的国际**水平,为推动我国纸面石膏板行业的发展,促进生产技术向规模化、产业化、自动化方向发展作出了杰出贡献

  摘 要 随着光电传感器技术的不断成熟,其在变电站自动化系统中的实用化成为研究的重点。本文在分析了光电传感器性能特点的基础上,从通信方式和通信系统结构的影响两个方面阐述了光电传感器的应用对变电站通信控制系统的影响。并结合我国变电站自动化系统的现状,重点探讨了光电传感器在变电站自动化系统中的应用方法和步骤:利用仪用传感器单元实现光电传感器与通信网络的接口;根据通信技术的发展状况和变电站的应用需求,光电传感器的接入方式可以分为三种不同的形式。光电传感器作为新型的电子式互感器,其应用将对变电站自动化系统产生深远的影响。
    关键词 光电传感器 变电站自动化系统 光电接口 仪用传感器单元 网络通信


1前言
光电传感器作为一种新型的电压电流测量装置,与传统电磁式互感器相比较,具有绝缘强度高、动态范围大、频带宽、抗干扰能力强、不会产生磁饱和及铁磁谐振、体积小、重量轻、造价低等一系列优点。自20世纪60年代以来,光电传感器经历了原理性研究、试验样机和现场挂网运行等阶段[1]。目前国外已经有部分实用化产品投入市场,但真正得到大规模的应用还有一个过程,而且国内变电站自动化系统的应用水平不一,如何让光电传感器在变电站自动化系统中得到应用并**变电站自动化系统的水平,成为光电传感器研究的重点。
    变电站通信控制系统是变电站自动化系统的重要组成部分,其技术水平直接关系到变电站自动化系统的性能。随着电子技术和通信技术的飞速发展,变电站通信系统也经历了集中式、功能分布式和分散分布式等阶段[2]。而通信系统的发展变化总是与变电站的测控、保护装置的发展变化相适应的。随着光电传感器在变电站中的应用,将对变电站通信控制系统产生深远的影响,并**其自动化应用水平。

2光电传感器的性能和特点
    光电传感器(OpticElectric Transducer,OET)根据传感头设计原理的不同可以分为有源型光电传感器(Active OET,AOET)和无源型光电传感器(Passive OET,POET)两种。前者在高压端采用新型传感头得到性能优越的电信号,利用光电转换为数字信号传输到低压端;后者主要是利用Faraday磁光效应(电流传感器)和Pockels电光效应(电压传感器)调制光信号,传感过程中不涉及电信号。虽然AOET和POET的传感原理差别很大,但传感特性和输出接口却存在很多的共同性,主要体现在以下几个方面[3,4,5]:
    1)暂态响应范围宽,谐波测量能力强
    暂态特性的优劣是判断一种互感器能否在电力系统中获得应用的一个重要参数,特别是与继电保护动作时间的配合。传统电磁式互感器由于存在铁芯,对高频信号的响应特性较差,不能正确反映一次侧的暂态过程。而光电互感器传测量的频率范围主要由电子线路部分决定,没有铁芯饱和的问题,因此能够准确反映一次侧的暂态过程。一般可设计到0.1 Hz到1 MHz,特殊的可设计到200 MHz的带通。光电传感器的结构可以测量高压电力线路上的谐波。而电磁感应互感器是难以达到的。
    2)数字接口,通信能力强
    由于光电传感器下传的就是光数字信号,与通信网络容易接口,且传输过程中没有测量误差。同时随着微机化的保护控制设备的广泛采用,光电互感器可以直接向二次设备提供数字量,这样就能省去原来保护装置中的变换器和A/D采样部分,使二次设备得到大大的简化,推动保护新原理的研究。
3)体积小,重量轻、易升级,满足变电站小型化与紧凑型的要求,由于光电传感器是靠传感头和电子线路进行信号的获取和处理,体积小,重量一般在1000 kg以下,便于集成在AIS或GIS中,这样将大大减少变电站的占地面积,满足变电站小型化和紧凑化的要求。同时光电互感器通过少量光缆与二次设备连接,可使电缆沟和电缆大为减少。如果间隔内的控制和保护等设备下放开关柜,将使变电站布置更紧凑。**安全运行水平,经济效益显著。
光电互感器还具有绝缘结构简单,绝缘性能好,造价低;不存在铁磁谐振问题;不存在CT二次开路、PT二次短路问题,以及不存在易燃、易爆危险等优点。但上面介绍的3个主要方面直接影响着变电站通信控制系统的通讯方式和系统结构,将对变电站自动化系统的发展有着重要影响。
3光电传感器的应用对变电站通讯系统的影响
    变电站自动化通讯系统包括系统内部的现场级通信和自动化系统与上级调度通信两部分。在这里我们主要讨论光电传感器的应用对内部的现场级通信系统的影响。现场级通信主要解决内部子系统与上位机(监控主站)以及各子系统间的数据通信和信息交换问题,它的通讯范围是变电站内部。对于集中组屏的自动化系统来说,实际是在主控室内部;对于分散安装的自动化系统来说,其通讯范围扩大到主控室与子系统的安装地,通讯距离加长了。通讯方式有并行、串行、局域网和现场总线等多种方式。而目前国内流行的是分散分布式变电站自动化系统,其简单结构示意图如图1。

     

    其优点是变电站二次部分采用单元间隔的组织形式,功能分散,系统得到了一定的优化。但也存在装置间缺乏整体的协调和功能优化;输入信息不能共享,接线比较复杂;系统扩展复杂等问题。而随着光电互感器、智能化开关设备等面向一次的智能化设备日趋成熟,为改变变电站目前监视、控制、保护和计量装置及系统分隔的状态提供了资源整合和系统集成的技术基础。
光电传感器的应用对通信系统的影响和改进主要体现在两个方面:
    1)由于光电传感器具有数字输出、接口方便、通信能力强的天然特性,其应用将直接改变变电站通讯系统的通信方式,特别是一次设备与间隔层二次设备间的通信方式。传统的信号都是以模拟量的形式传送到间隔层,同一个CT/PT可能会连接到多个不同的设备,造成二次接线复杂,互感器负荷重等问题。利用光电传感器输出的数字信号,使用现场总线技术实现点对点/多个点对点或过程总线通信方式。将完全取代大量的二次电缆线,彻底解决二次接线复杂的现象,可实现真正意义上的信息共享。
    并且光电传感器的接口设计方便,利用模块化和面向对象技术实现硬件、软件的标准化设计,满足不同传输介质和各种通信协议和标准的需要,具有灵活的扩展性和自适应性。而这是传统互感器所不可能具备的特性。
    2)对通信系统结构的影响。由于通信方式的改变,加上数字断路器控制和电子开关装置等智能电子设备(IED)的采用,使得功能不断下放,变电站自动化系统由两层结构变为三层结构:过程层、间隔层和变电站层。
    其中过程层主要安放有光电传感器、合并单元、开关电子装置模块、断路器智能控制模块等部件,过程层可以完成电力运行的实时电气量检测;运行设备的状态参数检测;操作控制执行与驱动等功能。间隔层安放保护、测量、和间隔控制单元,主要功能有汇总本间隔过程层实时数据信息;实施对一次设备保护控制功能;实施本间隔操作闭锁功能;实施操作同期及其他控制功能;对数据采集、统计运算及控制命令的发出具有优先级别的控制;承上启下的通信功能等[6]。
    而结构的改变和通信网络技术的进步,变电站通信系统终将成为如图2所示的结构。现场过程总线和站级总线合二为一,大程度地实现信息共享和系统集成。

4光电传感器在变电站自动化系统中的应用
    我国变电站自动化系统发展水平不均衡,既有集中组屏的老式自动化系统,又有分散分层**的自动化系统。光电传感器的应用必须满足不同水平的变电站自动化系统。为了与老系统兼容,将IEC定义的合并单元(Merging Unit,MU)扩展到仪用传感器单元(Instrument Transducer Unit,ITU),使光电传感器既具备将传统互感器输出模拟量数字化的功能,也具备输出模拟量的功能[7]。从而具有较高的灵活性,很容易与各种系统接口配合使用。ITU的功能结构图如图3所示。

    ITU的设计应该遵循模块组件化原则。ITU中含有合并单元、数据通信模块、集成故障录波仪、时钟控制装置等模块。利用模块化的通信组件,ITU实现与间隔层设备的点对点和过程总线通信,并可方便地升级到IEC 61850-9-2标准通信协议。以ITU为底层基本处理单元,取代传统互感器和二次电缆,实现光电传感器在变电站自动化系统中的应用。
    在我国,为了更好地推动变电站自动化系统水平的**,ITU在变电站自动化系统的应用存在3个阶段:
     1)兼容传统互感器,点对点通信和过程总线相结合阶段
    该阶段中,光电传感器的测量数据是通过点对点连接,直接传送到保护装置的,目前IEC定义了该连接的标准协议有IEC 61850-9-1和IEC 60044-8。同时ITU还将RMS值通过过程总线传送到间隔层处理单元,过程总线还负责监控开关设备信息的传送。过程总线标准有IEC61850-9-2,实施中可以考虑10Mbit/s的以太网。其原理示意图如图4所示。

       

     2)过程总线共享传感器数据阶段
    该阶段,原来分开传送的测量数据和控制数据将通过过程总线合二为一。该合并简化了间隔单元里复杂的接线状况,但同时由于实时的ITU测量数据和保护设备的控制命令都是通过过程总线传送的,过程总线的传输速度和响应能力比前一阶段要求更高。过程总线标准IEC 61850-9-2依然适用,实施中可以考虑100Mbit/s的以太网。

       

    3)过程总线和站级总线统一,全站共享数据阶段
    随着快速以太网技术的发展以及现代网络交换技术,使得连接站级总线和下面的过程层总线成为可能,在网络通信应用层中统一使用MMS协议标准的基础上,将保证通信系统的实时响应等性能指标不受影响。总线统一的好处首先是信息的完全共享,统一的访问和存储方式,并且间隔层的设备只需要一个通信接口,将大大降低设备和变电站运行和维护费用。该阶段的实现有赖于分等级的快速以太网技术的成熟和变电站通信协议的完善[8]。其原理示意图参见图2所示。
5结论
    由于光电传感器自身的数字输出特性和智能电子设备的特点,其应用对变电站自动化通信系统的影响是全面和深远的。利用光电传感器的光电转换和数据通信功能改造电磁式互感器,实现过程层和间隔层的点对点/多点对多点或现场总线通信,将会成为我国变电站自动化系统改造升级的有效途径。而建设以光电传感器和其他智能电子设备为基础的新型变电站自动化系统,实现变电站站内各层间的无缝通信,大限度的满足信息共享和系统集成的要求,则是我国变电站自动化系统的发展方向


人气
71
发布时间
2023-05-26 01:33
所属行业
PLC
编号
31637670
我公司的其他供应信息
相关西门子模块产品
拨打电话
微信咨询
请卖家联系我