西门子6ES515-2UM01-0AB0型号介绍
1前言
目前,常规供暖设备有燃煤锅炉、燃油锅炉、燃气锅炉、电热水锅炉等。燃煤锅炉效率低,对环境污染严重;燃油或燃气锅炉污染较小,但运行费用较高;电热水锅炉属于无污染设备,但运行费用仍然很高,不能满足用户的廉价要求。新近发展的自储能电锅炉蓄热技术以电为消耗能源,通过电锅炉将电能转化为热能,蓄热水箱储存热能并在需要时释放。该技术不仅对环境没有污染,是利用电网谷值(夜间)加热储热介质,平段和高峰时段不用电,或在平段时少用电。大多电力公司在谷值时段都推出优惠电价,从而大大降低了供暖费用,并且对供电系统起到了很好的“削峰添谷”的作用,具有很大的节能效益。它是目前的发展方向,在新建和改造供暖设备中具备很大的推广价值。
2 系统介绍
自储能电锅炉主要由电加热器、储热箱、可控式热管、取热管、取热加热控制器、水温调节器以及若干管道、阀门等构成。其工作原理是以储热箱为主体,其中有若干个电加热器,用于加热储热箱储热。为了从储热箱中取出热量,利用可控式环行热管原理,构成一个取热循环系统,由热交换器、水泵、管网等构成,与常规的供热系统基本相同。还有一个供热外循环系统,由气液热交换器、液液热交换器、水泵和供暖网管等组成。在取热过程中,取热管的作用是使进入管中的液体工质蒸发,从而带走贮热箱中贮存的热量,送入气液热交换器中,由气液热交换器把热量交换给供暖外循环系统。此后,气体工质进入冷凝器冷凝成液体,由外循环泵送回取热管。取热控制器的作用是控制取热管阀门的大小,从而控制取热量的多少,供热外循环系统和常规的供暖系统基本相同。在这套系统中,我们采用HOLLiAS-LEC G3作为自储能电锅炉的控制系统,担负着整个系统的加热、取热控制,并且对取热温度和外界温度进行监控。控制的功能主要分为以下四个方面:
1. 加热贮能:由控制器实现锅炉在电网高峰时段不用电,在平电时段有条件用电,低谷时段加热、储存能量;并且实现再启动加热的控制,对加热限温以防止超温,**系统运行的经济性和安全性。
2. 取热供暖:PLC可以采取两种方式控制供暖,种方式为分时段调节出口温度以达到供暖要求,第二种方式是在分时段调节出口温度的基础上再加上环境温度调节以更好地满足供暖要求。
3. 温度监控:温度变送器对加热炉、出口水温进行实时采样,将炉温和出口水温实时传递给控制系统,控制系统根据采样的温度进行实时处理,**锅炉运行的安全性、可靠性。
4. 故障报警处理:系统具有运行故障报警或超温限报警等功能,报警时控制系统会提示操作人员,方便于工作人员及时排除故障。
3 控制系统硬件配置
自储能电锅炉控制系统采用和利时公司的HOLLiAS-LEC G3系列小型一体化PLC,G3系列PLC具有良好的扩展性能和较高的稳定性,并且具备丰富的指令系统。该系统使用1个24点CPU模块LM3107、1个4输入4输出的开关量扩展模块LM3231、3个4通道热电偶扩展模块LM3311和1个4通道热电阻扩展模块LM3312。热电偶与热电阻模块采集温度信号,经过处理后送入CPU模块。PLC的输出部分有报警灯与中间继电器,触摸屏与LM3107通过RS232口采用Modbus协议连接,线圈部分均有灭弧装置。该系统具备自动、手动控制方式,并可以通过触摸屏进行控制,简洁明了。
该系统方案如图1。
4程序流程图
控制系统软件部分由加热控制、取热控制和状态监测三部分组成。
加热程序执行时,读取PLC硬件实时时钟,判定当前在谷电、峰电还是平电时段。若在谷电时段,则判断储热箱是否储满能量。如果已满则不加热,否则进行加热。若在峰电时段,则不进行加热。若在平电时段,则判断储热箱内的能量是否即将耗完,如果低于低设定值则进行加热,否则停止。
取热程序执行时,将外部扩展模块读入的各个温度值与设定值进行比较,从而控制取热阀的开度。
状态检测程序执行时,当有温度值过高或者过低等故障发生时,PLC会采取相应的报警措施,并转入相应的处理程序。
程序流程图分别如图2、图3、图4所示:
5 结束语
本文提出的自储能电锅炉控制系统具有以下优点:
1. PLC运行可靠、编程简单,一套PLC即可实现自储能电锅炉加热、储能、取热的控制,并且对炉温和出口水温进行实时监控。
2. LM3311、LM3312温度采集模块直接采集工业现场的温度信号,不需要温度变送器,信号直接进入PLC进行处理,**度高,使用方便。
3. 适应现代工厂自动化对系统开放性和互联性的需要,和利时的小型一体化PLC具备强大的网络通信功能,可以通过DP网络或者Modem进行远程监控,具备可升级性。
经过一段时间的调试和试运行,HOLLiAS-LEC G3系列PLC为核心控制系统的解决方案已成功应用于自储能电锅炉设备,运行稳定、操作简单,并且系统的安全性、经济性都有很大的**。
变频调速器是一种高效节能调速装置,它以DSP或微处理器为核心,为电动机运行多种电气控制和报警功能,保障设备安全,延长使用寿命。特别是它可以根据设定信号调节电动机转速,实现生产自动控制,节电效果显著,可有力地促进企业节能工作的开展,在电机供电控制中得到广泛应用。下面以我厂催化装置中的轻柴油泵为例简单说明控制调速策略。
一、概述
在工矿企业中大量地使用着风机、水泵、搅拌机、压缩机等,这些机械一般都以交流电动机驱动。其中大部分电动机均不是工作在额定功率,而经常只有额定功率的50%~70%,甚至更低一些(20%~70%)。但电动机大部分处在恒速运行状态,并以档板、阀门或放空回流的办法进行**或压力的调节,从而白白损失大量的电能,功率越大的风机、水泵,损失的电能越多。
对于水泵和风机,表达其特性的参数有:**(风量)Q,扬程(风压)H,功率P等。当转速从n1变为n2时,Q,H,P大致变化关系为:
Q2=Q1(n2 / n1)
H2=H1(n2 / n1)2
P2=P1(n2 / n1)3
即:**与转速成正比,扬程与转速的平方成正比,轴功率与转速的立方成正比。
如水泵的**或风机的风量等调节,只需调节电机的转速就可以实现,而将大大降低电机的消耗功率,节约了电能。
根据电工学的基本原理,电动机的转速n由以下公式表示:
式中:n---电动机的转速
f1---供电电源频率
S---转差率
P---电动机的极对数
要改变电动机的转速,只要改变供电电源的频率或者改变电动机的极对数或者转差率就可以改变电动机的转速。
改变极对数进行调速从理论上讲效率高,因为它没有额外的损耗,但对电动机的制造要求高,机械结构较为复杂,且属于有级调速,不灵活,较少使用。改变转差率,以往曾用过滑差电机,但由于电机结构复杂、故障率较高,维修困难,现也很少采用。改变频率进行调速,可以达到无级调速,在二十世纪八十年代初期在我国采用还不多,原因是变频装置本身的限制,后来随着微电子技术及IGBT功率器件的迅速发展,变频调速技术也得到了前所未有的发展,按目前技术的水平,不但调速精度达到了很高,损耗可以减少到小(变频器效率可高达99%)。现在变频调速可以应用到各种规格的电动机中。
二、变频调速器的应用
变频调速器是一种高效节能调速装置,它以DSP或微处理器为核心,为电动机运行多种电气控制和报警功能,保障设备安全,延长使用寿命。特别是它可以根据设定信号调节电动机转速,实现生产自动控制,节电效果显著,可有力地促进企业节能工作的开展,在电机供电控制中得到广泛应用。下面以我厂催化装置中的轻柴油泵为例简单说明控制调速策略。
1、控制流程简介
轻柴油泵采用一开一备的配置方式,共有P1205A/B两台泵。在正常情况下,一台运行另一台备用,主、备泵的切换通过人工方式手动实现。在供电控制方式上,P1205A实行常规电气控制,主电源直接供给电动机,P1205B实行变频调速控制,主电源经过变频后送给电机。系统调节参数为中间产品罐液位,测量位号为LT1206,PID调节回路调节阀LV1206。用控制电机转速和调节阀开度使液位LT1206稳定在给定值上,DCS上将原有的LC1206调节器组态位号改为LC1206A,新增一个PID调节器位号LC1206B(其组态内容与LC1206A一致),用LC1206B和变频器INVERTER控制电机转速或用LC1206A控制调节阀的开度使**稳定在给定的值上。
2. 控制方案的实施
该**在DCS中的控制原理如图一所示。
控制过程如下:在正常情况下LC1206B调节回路输出4-20mA调节信号到变频器作为频率设定信号,变频器按照给定信号输出相应频率的电压电源,从而调节电机转速。LC1206A调节回路保持在手动方式,输出锁定在,控制泵出口调节阀处于全开位置,以便实现变频器控制**的目的。在DCS上,在相应的流程图上对应P1205B位置组态了变频器调速图案,在变频器运行时,其状态显示为绿色,当变频器处于非运行状态(包括变频器故障和人为停机)时,其颜色为红色。
当变频器出现故障或人为将其切除时,流程图上变频器图案出现红色,工艺操作人员进行人工切换泵,LC1205B切到手动方式,LC1206A进入自动状态输出4-20mA信号,控制调节阀LV1206的开度,P1205A电动机以额定转速运行。
3. 控制系统的组成
该控制系统包括工频控制系统和变频控制系统。工频控制系统由DCS中组态的控制器LC1206A,调节阀LV1206,电动机,柴油泵P1205A和液位测量LT1206组成,变频控制系统由DCS中组态的控制器LC1206B,变频器,电动机,柴油泵P1205B和液位测量LT1206组成。两个系统由手动进行切换,其控制系统方块图见图二。
4. 变频器的选型和主要参数设定
我们选用的变频器是深圳艾默生电气有限公司的TD2000系列变频器,型号是TD2000-4T1100P,适配电机110KW。
电源输入:三相380V,50HZ/60HZ
输入变动容许值:电压±20%;电压失衡率