RSOEMAX触摸屏维修

RSOEMAX触摸屏维修

发布商家
广州腾鸣自动化控制设备有限公司
联系人
李德潮(先生)
手机
15915740287
价格
¥100.00/件

RSOEMAX触摸屏维修  有大量RSOEMAX触摸屏配件以及二手设备销售。每个维修设备做到程序备份,带载测试视频给客户(确保维修设备维修好,区别其他公司)。

当天检查以及维修设备,节省客户时间。

广州腾鸣自动化控制设备有限公司

蓬莱 招远  潍坊 青州   昌邑   深圳  海阳 诸城 寿光 兖州 邹城济南  哈尔滨 福州  北京 长春

 西宁 海口 呼和浩特 西藏自治区  郑州 南昌 长沙  石家庄 重庆  恩平 湛江 菏泽 松岗

 从化 韶关 市桥、 广州   珠海 汕头 增城 乐昌 澄海  台山  南雄 深圳 开平 佛山 江门 

泰安 新泰   乐陵  乳山 日照  德州 滨州 鹤山  ,番禺、 杭州 乌鲁木齐  武汉 钟村小塘,细滘工业区,禅城,

济南青岛  滕州 东营 临沂 肥城 威海  胶南 莱西 枣庄 烟台 龙口 莱阳 莱州 成都 昆明 银川 太原

我们维修优势: 

一、专修别人修不好的,如客户紧急,可更换配件当天修好。

 二、配件齐全,维修不会丢失程序数据参数,维修有保障 

三、全国各大城市均有维修点。

我司部分维修点:

广州番禺钟村屏山办事处

佛山顺德大良办事处

中山小榄办事处

江门鹤山办事处

LAUER触摸屏维修、BECKHOFF触摸屏维修、Resotec触摸屏维修、AUTOSPLICE触摸屏维修、unitronics触摸屏维修、SUTRON触摸屏、LASKA触摸屏维修、Cutler Hammer触摸屏维修、Eisenmann触摸屏维修、UNIOP触摸屏维修、NESLAB RPC触摸屏维修、spn触摸屏维修、M2I触摸屏维修、QUICKPANEL触摸屏维修、REDLION触摸屏维修、BEIJER触摸屏维修、hitachi触摸屏维修、koyo触摸屏维修、rkc触摸屏维修、CONTEC触摸屏维修、idec触摸屏维修、KOMATSU触摸屏维修、STAHL触摸屏维修、PILZ触摸屏维修、YAMATAKE触摸屏维修、moeller触摸屏维修、patlite触摸屏维修、keba触摸屏维修、白光触摸屏维修、富士触摸屏维修、海泰克触摸屏维修、三菱触摸屏维修、台达触摸屏维修、ABB触摸屏维修、GARVENS触摸屏维修、MCGS触摸屏维修、ESA触摸屏维修、欧姆龙触摸屏维修、施耐德触摸屏维修、proface触摸屏维修、西门子触摸屏维修、B&R触摸屏维修、松下触摸屏维修、基恩士触摸屏维修、威纶通触摸屏维修、eview触摸屏维修、博世力士乐触摸屏维修、AB触摸屏维修、三洋触摸屏维修、LS触摸屏维修、ANYTOUCH触摸屏维修、PHOENIX CONTACT触摸屏维修、TLINE触摸屏维修、MAHLO触摸屏维修、MEGMEET触摸屏维修、ScreenWorks触摸屏维修、seedsware触摸屏维修、WAGO触摸屏维修、CTC触摸屏维修、honeywell触摸屏维修、bruderer触摸屏维修、PARKER触摸屏维修、GEFRAN触摸屏维修

RSOEMAX触摸屏维修常见故障:上电无显示,运行报警,无法与电脑通讯,触摸无反应,触控板破裂,触摸玻璃,上电黑屏,上电白屏等故障。

       在各种单片机应用系统中,存储器的正常与否直接关系到该系统的正常工作。为了提高系统的可靠性,对系统的可靠性进行测试是十分必要的。通过测试可以有效地发现并解决因存储器发生故障对系统带来的破坏问题。本文针对性地介绍了几种常用的单片机系统RAM测试方法,并在其基础上提出了一种基于种子和逐位倒转的RAM故障测试方法。

    1RAM测试方法回顾

    (1)方法1

    参考文献中给出了一种测试系统RAM的方法。该方法是分两步来检查,先后向整个数据区送入#00H和#FFH,再先后读出进行比较,若不一样,则说明出错。

    (2)方法2

    方法1并不能完全检查出RAM的错误,在参考文献中分析介绍了一种进行RAM检测的标准算法MARCH—G。MARCH一G算法能够提供非常出色的故障覆盖率,但是所需要的测试时间是很大的。MARCH—G算法需要对全地址空间遍历3次。设地址线为”根,则CPU需对RAM访问6×2n次。

    (3)方法3

    参考文献中给出了一种通过地址信号移位来完成测试的方法。在地址信号为全O的基础上,每次只使地址线Ai的信号取反一次,同时保持其他非检测地址线Aj(i≠j)的信号维持0不变,这样从低位向高位逐位进行;接着在地址信号为全1的基础上,每次只使地址线Ai的信号取反一次,同时保持其他非检测地址线Aj(i≠j)的信号维持1不变,同样从低位向高位逐位进行。因此地址信号的移位其实就是按照2K(K为整数,大值为地址总线的宽度)非线性寻址,整个所需的地址范围可以看成是以全0和全1为背景再通过移位产生的。在地址变化的同时给相应的存储单元写入不同的伪随机数据。在以上的写单元操作完成后,再倒序地将地址信号移位读出所写入的伪随机数据并进行检测。设地址线为n根,则CPU只对系统RAM中的2n+2个存储单元进行访问。

    2基于种子和逐位倒转的RAM测试方法

    基于种子和逐位倒转的测试方法是在方法3的基础上进一步改进获得的。方法3主要是使用全O和全1两个背景数来移位展开的,与MARCH—G算法相比获得的故障覆盖率稍微低些,但使用了较少的地址单元。这里我们把方法3中的背景数称为“种子”。以地址线为8根的RAM为例,种子分别取00000000和11111111两个数,取00000000、11111111、0000llll和llll0000四个数,以及取00000000、11111111、00001111、11110000、00110011、1100llOO、01010101和10101010八个数来移位展开测试,所达到的故障覆盖率是不一样的。种子数为2的改进方法要低于MARCH—G算法的故障覆盖率,种子数为4的改进方法与MARCH—G算法相当,种子数为8的改进方法能够超过MARCH—G算法的效果。整体上基于种子和逐位倒转的改进方法是可以代替MARCH—G算法的,但是种子数目不同所需要的寻址次数也是不同的。设地址线为n根,种子数为2时需要访问RAM共计4”+4次,种子数为4时需要访问RAM共计8n+8次,种子数为8时需要访问RAM共计16n+16次,而MARCH—G算法需要访问RAM共计6×2n次。可见,基于种子和逐位倒转的改进方法比MARCH—G算法的测试时间开销大大降低。同时,故障覆盖率会随着种子数目的增加而提高,当然不同种子数时所需要的测试时间开销也不同。在实际测试应用中要根据测试时间和测试故障覆盖率的需求来选择合适的种子数目,才能达到满意的效果。

    3结语

    本文介绍了单片机系统RAM测试的一般方法,并在原有基础上提出了一种基于种子和逐位倒转的RAM故障测试方法。它具有诊断耗时短、故障覆盖率高的特点,因而有着很高的应用价值。

    DSP系统的引导装载是指在系统加电时,由DSP将一段存储在外部非易失性存储器中的代码移植到内部高速存储器单元并执行的过程。这种方式即可利用外部存储单元扩展DSP本身有限的ROM资源,又能充分发挥DSP内部资源的高速效能。因此,引导装载系统的性能直接关系到整个DSP系统的可靠性和处理速度,是DSP系统设计中必不可少的重要环节。在装载系统中,外部非易失性存储器和DSP的性能尤为重要。FLASH是一种高密度、非易失性的电可擦写存储器,而且单位存储比特的价格比传统EPROM要低。为此,本文介绍了TMS320C6713浮点DSP芯片和SST公司提供的SST39VF400AFLASH存储器的基本特点,给出了使用该FLASH存储器设计和实现完整的TMS320C6713DSP引导装载系统的具体方法。

    1硬件设计

    1.1主要芯片介绍

    DSP自动引导装载系统主要使用DSP芯片(TMS320C6713)和外扩存储器(SST39VF400A)两种芯片来实现。其中TMS320C6713是一款高性能的32位浮点DSP,适用于音频信号处理。该芯片的内部结构是在TMS320C62XX的基础上加以改进制成的,其内部集成了多个功能单元,并采用了先进的VLIW体系结构及流水线技术;它采用3.3V的I/O电压和1.8V的内核电压供电方式,并具有两级cache缓存结构。除此之外,它还有以下两个主要特点:是运行速度快。德州仪器公司(TI)推出的这一款300MHz的TMS320C6713数字信号处理器(DSP)的处理速度高达1800MFLOPS。TMS320C6713可以使用的工作时钟和对应指令周期表如表1所列。


    TMS320C6713可以使用的工作时钟和对应指令周期表如表1所列

    其次是精度高。TMS320C6713有三个因素影响着浮点格式的内在高精度。首先,浮点DSP的24位I/O字长在整数与实数值方面可实现比定点器件中常用的16位字长更高的jingque度。第二.取幂大幅提高了应用可用的动态范围,较大的动态范围对处理极大数据集以及难以方便预计数据集范围的情况相当重要。第三,硬件内部的浮点数据表示法比定点器件更为jingque,这就保证了终结果的更高jingque度。

    SST39VF400A是SST公司推出的FLASH存储器。该器件十分适合用作外扩存储器,它的存储容量为4MB,采用3.3V单电源供电,因而无需额外提供高电压即可通过一些特殊的命令字序列来实现对各个子模块的读写和擦除。并可重复十万次以上,此外,还可通过DSP编程来实现对它的读写操作,十分适合于系统的调试和开发。

    1.2系统硬件接口设计

    DSP访问片外存储器主要通过外部存储器接口(EMIF)完成。它不仅具有很强的接口能力(可以和各种存储器直接接口),而且具有很高的数据吞吐能力(高达1200MB/s)。TMS320C6713的EMIF能支持8位、16位和32位宽的所有存储器,当从这些窄位宽的存储空间读写数据时,EMIF会将多个数据打包成一个32位的值,而不必增加额外电路。TMS320C6713与SST39VF400的接口电路设计如图1所示。该电路主要通过DSP的相关输出管脚来控制FLASH的擦除和读写。其中,A0~A19为地址线,DQ0~DQ15为数据线,OE和WE分别为输出使能和写使能,CE1为片使能。由于TMS320C6713默认的引导模式是从外部CE1空间的16位FLASH来引导装载,所以,TMS320C6713的CE1和FLASH的片选CE相连。


人气
49
发布时间
2023-12-13 12:16
所属行业
人机界面
编号
40585647
我公司的其他供应信息
相关触摸屏维修产品
拨打电话 请卖家联系我