操作便利 1734-IB4 易于安装
1756-PB72
1769-ADN
1734-IV4
1746-IV16
1761-CBL-PM02
1756-OA16I
1769-SM2
1734-IV8
1746-IV32
1761-NET-AIC
1756-OB16E
1769-OF4CI
1734-MB
1746-NI4
1762-IQ8
1756-OW16I
1769-DPS
1734-OA4
1746-NI04I
1768-CNBR
1756-L71
1769-OB16
1734-AENT
1746-NI04V
1762-L24BWA
1756-OX8I
1769-OB16P
1734-OB4
1746-NO4V
1762-OB16
1756-PA72
1769-L35E
1734-TBS
1746-NT4
1763-BA
1756-PLS
1769-0A8
1734-OB4E
1746-OA16
1764-24BWA
1756-PSCA2
1769-OB16
1734-OB8
1746-P1
1764-LRP
1756-RM
1769-OB32
1734-OB8S
1746-P3
1764-LSP
1756-RMC1
1769-OB8
1734-OE2V
1746-A10
1768-PB3
1756-PA75R
1769-OF2
1756-L72
1746-A7
1768-CNB
1756-OB16E
1769-ASCII
1734-OW2
1746-OB16
1768-L43
1756-A10
1769-OV16
1734-TBCJC
1746-OB16E
1768-ENBT
1756-A13
1769-OW16
1734-ACNR
1746-OB32
1768-EWEB
1756-A17
1769-OW8
1734-AENTR
1746-BAS
1768-MI04SE
1756-PA75
1769-QWBT
1734-ARM
1746-TM16
1771-OBN
1756-TBS6H
1769-IQ32
1734-AFM
1746-IB32
1771-ASB
1756-IB16I
1769-IQ6X0W4
1734-EP24DC
1746-OBP8
1771-IBD
1756-OF4
1769-I6X0W4
1734-EPAC
1746-OW16
1771-OAN
1756-CN2R
1769-IQ620W4
1734-FPD
1746-HSCE
1771-CFM
1756-CN2RXT
1769-L30
1734-IB2
1746-HSRV
1783-BMS10CGP
1756-OB32
1769-L30ERMS
1734-IB4
1746-IA16
1783-EMS08T
1756-OB8
1769-L32C
1734-IT2I
1746-IO12DC
1783-MEKO8T
1756-A7
1769-L33ER
1794-OF4I
1746-OW8
1783-SFP1GLX
1756-CN2
1769-IF4X0F2
1794-OF4IXT
1747-ASB
1783-US05T
1756-CNB
1769-IF8
1794-OW8
1747-L524
1783-USO8T
1756-CNBR
1769-IQ16
1794-TB3
1747-L532
1784-CF64
1756-OF6CI
1769-PA2
1794-PS13
1747-L542
1784-KT
1756-RM2
1769-PB2
1794-PS3
1747-L543
1784-SD1
1756-OF6VI
1769-BA
1794-TB32
1747-L552
1786-RPA
1756-CPR2
1769-ECL
1794-TB3TS
1747-SDN
1786-RPCD
1756-DHRI0
1769-ECR
1794-TBNF
1747-SN
1786-RPFM
1756-OB16I
1769-IA16
1794-TB32S
1757-SRM
1787-MCABL
操作便利 1734-IB4 易于安装
生成式AI大模型并未改变
人工智能在工业领域应用的范式
以ChatGPT、Llama等为代表的大模型技术拉开了迈向通用人工智能的序幕,人工智能成为全球经济增长的重要驱动力,对各类产业的智能化带来全新的空间。根据普华永道的预测,到2030 年,人工智能可为全球经济贡献高达 15.7 万亿美元,超过中国和印度目前的产出总和。其中,6.6 万亿美元可能来自生产率的提高,9.1 万亿美元可能来自消费端的影响。对于制造业,人工智能一直是智能制造、工业4.0、工业互联网等领域的重要部分,在ChatGPT、Stable Diffusion等崛起前,质量检测、设备预测性维护等代表性的人工智能应用已经深度融入制造业,并且形成成熟的应用范式。
工业人工智能的应用范式已经成型,一是需要深度学习、强化学习等数据科学算法,计算机视觉、自然语言处理、语音识别等面向领域的算法,知识图谱、专家系统等知识工程,例如通过计算机视觉来构建产品外观检测的模型,基于强化学习进行排产规划模型的构建,借助知识图谱构建设备运维服务。二是需要通用支撑技术保障人工智能应用在制造业的部署和推理,例如边缘计算、高性能计算等技术保障现场的推理速度,时序数据库、大数据平台等保障数据的有效管理和接入。三是需要工业领域知识及经验实现人工智能应用与工业场景的适配,例如在模型训练的时候需要专家经验的介入实现调优和优化,在部分场景下需要机理模型和人工智能模型的结合才能发挥作用,在生产现场模型的部署和实施也需要和自动化的设备、工业软件等进行集成。
图1 工业人工智能实施范式
大模型的崛起并没有对人工智能在制造业的应用范式引起根本性的变革,但是在不同的环节增添了特定的需求,例如在算法层面,基于Transformer、U-Net 等架构的基础模型成为生成式人工智能进入制造领域的基础;在通用支撑技术领域,向量数据库、MaaS等也成为重要的数字基础设施;在工业知识及经验领域,不同以往对时间序列等结构化数据的需求,生成式AI对高质量文本、图片、文档等数据的要求不断提升。虽然大模型仍在原有的范式下进行应用,但是大模型技术会不断的拓展人工智能在工业领域应用的空间,根据埃森哲测算,Al可以在2035年将制造业的附加值提高近4万亿美元,根据Marketresearch预测,到 2032年,全球生成式人工智能制造市场规模将达到63.98亿美元。
图2 生成式人工智能在制造业的市场规模
生成式AI大模型短期趋势:
拓展新场景并未出现替代小模型
图3 生成式人工智能大模型在制造业的应用情况
生成式AI大模型能力覆盖结构化数据、文本、图像、音视频等多个领域生成,但在制造业领域的探索仍聚焦于结构化数据、自然语言和图像数据的处理和生成。这种情况的形成主要是目前尚未出现能力较强的音频、视频领域的基础模型,所以尚未出现小模型领域像基于声纹分析的设备诊断、基于视频分析的安全生产等相关的工业案例。生成式AI探索也覆盖了制造业的研发设计与规划、生产过程管控、经营管理优化、产品服务优化等全生命周期。
在研发设计与规划阶段,一方面是利用自然语言的交互能力实现CAD软件功能的拓展,例如Back2CAD 基于Elaine CAD Bot、ChatGPT 和 Amazon AWS等的支持推出CADGPT™,支持智能推荐、文档生成、代码生产等各类功能。另一方面是基于图像数据的生成能力提升设计效率,例如海尔设计基于亚马逊云科技和合作伙伴 Nolibox 携手打造的 AIGC 解决方案,将AIGC 图像生成能力引入到产品设计、UI 设计、CMF 设计、品牌设计等环节,涵盖了新品设计、改款升级、渠道定制化等工业设计的业务场景。
在生产制造环节,围绕知识问答和代码生成等能力成为重要的探索热点。例如西门子和微软还在合作开发可编程逻辑控制器(PLC)的代码生成工具,ChatGPT 被用于通过自然语言输入生成 PLC 代码。Authentise通过利用12,000 篇科学增材制造论文对通用大语言模型的精调,推出 3DGPT用于增材制造技术问答。用户可以获得例如“在使用粉末不锈钢时如何减少缺陷的可能性”等问题答案。例如创新奇智推出AInno-15B工业大模型,通过大模型服务引擎支撑生成式AI应用,实现工业机器人控制、企业私域数据分析、企业私域知识库等应用。SprutCAM X结合ChatGPT api 构建CAM虚拟助手,能够支持工程师操作机床加工,例如提出在点(100, 25)处钻一个直径10毫米的孔”,AI助手就会为生成相应的CAM执行代码。C3iot 也是基于大语言模型构建了面向多个行业和多个领域的生成式AI 服务,并且为某大型制造企业基于生成式AI提供设备运维服务,借助 C3 Generative AI,操作员可以利用简化的工作流程来诊断设备故障根因。当操作员发现生产问题时,可以直接进入 C3 Generative AI 搜索故障排除指南和教科书,以找出潜在原因。
图4 C3IOT生成式AI 服务架构图
在经营管理环节,基于大语言模型新增智能问答、数据分析等能力成为主流。例如在ERP领域,用友以ChatGPT、文心一言、Llama等大模型为底座构建yongpt,在大模型的基础架构当中,把确定性的事项交回用友BIP原有的产品功能去做,把不确定的事项、推理性的事项和人脑思维意识派定的事项交给大模型去开发,能够支撑企业经营洞察、智能订单生成、供应商风控、动态库存优化等应用。在CRM 领域,Salesforce、微软等均加强生成式AI在产品中的集成和应用。
图5、用友yongpt架构
在产品服务优化环节,将大模型的能力集成到产品中,成为消费电子、汽车等领域产品智能化能力提升的探索焦点。例如国光电器推出的智能音箱Vifa ChatMini 内置了ChatGPT和 文心一言双模型,在保持了声学标准的基础上,与传统的智能音箱相比,Vifa ChatMini 在自然语言生成和情感表达方面具有显著的优势,可应用到老年人和儿童等特定用户群体,用于情感支持和智能学习陪伴,也可作为智能助手应用在日常工作和规划中。
综上,目前生成式AI大模型在制造业的探索路径初步呈现为三条路径:
一是通过直接集成基础大模型的问答、代码生成等通用能力来提升效率。例如海尔、西门子等的CAD、PLC代码生成;Salesforce、微软、ABB、用友等在CRM、ERP、生产管理等软件接入大模型,提升软件的数据分析、文档管理、知识问答等辅助能力。
二是通过微调、外挂知识库等方式来聚焦领域实现场景创新,增加新的功能。例如,Authentise通过利用12,000篇科学增材制造论文的精调对通用大语言模型的精调,推出 3DGPT用于增材制造技术问答。
三是从预训练开始构建工业大模型。例如创新奇智工业大模型AInno-15B从Llama 2、Falcon、Bloom等开源大模型中蒸馏一部分知识,再结合自己设计的参数结构和积累的工业知识数据做训练。经过Pretrain、SFT和RLHF三个训练步骤,依次使模型获得更懂工业、支持问答交互和答案更标准的能力。
操作便利 1734-IB4 易于安装