伺服驱动器 1769-IF16C 抗干扰能力强
1756-A10 1756-A13 1756-A17 1756-A4 1756-A7 1756-BA1 1756-BA2 1756-BATA | 1756-IF16 1756-IF16H 1756-IF8 1756-IF8H 1756-IF8I 1756-IF6I 1756-IF6CIS 1756-IT6I
| 1794-IM16 1794-IM8 1794-IR8 1794-IRT8 1794-IT8 1794-IV16 1794-IV32 1794-OA16
| 1756-HSC 1756-IA16 1756-IA16I 1756-IA32 1756-IB16 1756-IB16D 1756-IB16I 1756-IB32
|
1756-CN2 1756-CN2R 1756-CNB 1756-CNBR 1756-DHRIO 1756-DNB 1756-EN2T 1756-EN2TR 1756-EN3TR 1756-ENBT 1756-ENET 1756-EWEB | 1756-IR6I 1756-IR12 1756-IRT8I 1756-IT6I2 1756-IM16 1756-L61 1756-L62 1756-L63 1756-L64 1756-L65 1756-L71 1756-L71S
| 1756-M03SE 1756-M08SE 1756-M16SE 1756-N2 1756-OA16 1756-OA16I 1756-OB16D 1756-OB16E 1756-OB16I 1756-OB32 1756-OF4 1756-OF8
| 1756-BATA 1756-CNB 1756-IC16 1756-IB16 1756-IB32 1756-IF16 1756-IR61 1734-ACNR 1734-ADN 1734-AENT 1734-AENTR 1734-APB
|
1756-TBS6H 1756-TBSH 1757-SRM 1746-N2 1746-NI16I 1746-NI4
| 1756-PA75R 1756-PB72 1756-PB75 1756-RM 1756-IB16 1746-IV32
| 1756-OF8I 1756-OW16I 1756-PA72 1756-PA75 1794-OA8 1794-OA8I
| 1746-IA16 1746-IB16 1746-IB32 1746-IM16 1746-IO12DC 1746-ITB16 |
伺服驱动器 1769-IF16C 抗干扰能力强
03 工业数据采集的体系结构
工业数据采集体系包括设备接入、协议转换、边缘计算。设备接入是工业数据采集建立物理世界和数字世界连接的起点。设备接入利用有线或无线通信方式,实现工业现场和工厂外智能产品/移动装备的泛在连接,将数据上报到云端。工业数据采集发展了这么多年,存在设备接入的复杂性和多样性。
数据接入后,将对数据进行解析、转换,并通过标准应用层协议如MQTT、HTTP上传到物联网平台。部分工业物联网应用场景,在协议转换后,可能在本地做即时数据分析和预处理,再上传到云端,提升即时性并降低网络带宽压力。
边缘计算近几年发展迅速,大家越来越意识到数据就近处理的优势,无论是实效性还是出于数据安全性考虑,或是网络的可靠性,边缘计算在工业物联网体系中扮演着重要角色,边云协同也逐渐成了共识。
根据硬件载体不同,将设备接入产品分为以下3类,分类并非,不同类别之间的差异,在于其侧重点不同。
1. 通用控制器
类是通用控制器,来自工业装备大脑主控,例如可编程逻辑控制器(Programmable Logic Controller,PLC)、微控制单位(MicroController Unit,MCU)等,工业自动化领域存在很多控制和数据采集系统,如分布式控制系统(Distributed Control System,DCS)和数据采集与监视控制系统(Supervisory Control and Data Acquisition,SCADA),它们在承担本职功能的同时,可以作为接入设备使用。
通用控制器通常集成了数字输入输出I/O单元、网络通信单元,以及针对特定应用的选配功能,如模拟量输入单元、模拟量输出单元、计数器单元、运动控制单元等,通过串口或以太网物理接口连接,然后基于现场总线、工业以太网或标准以太网完成数据采集协议的解析,如图3-3所示。
▲图3-3 通用控制器
通用控制器应用于数控机床、激光切割机等各种自动化装备、机器人(如机械臂和移动机器人)、SCADA系统的通信管理机,有些自动化装备拥有专用控制器,采用不同的硬件架构如PowerPC、ARM Cortex等。基于通用控制器的设备接入,完成自动化装备自身数据、工艺过程数据采集。
2. 专用数据采集模块
第二类是专用数据采集模块,采集现场对象的物理信号,传感器将物理信号变换为电信号后,专用数据采集模块通过模拟电路的A/D模数转换器或数字电路将电信号转换为可读的数字量。
例如风力发电机利用力传感器实现风机混凝土应力状态的实时在线监测,为风机混凝土基础承载力的评估提供依据,同时利用加速度传感器采集振动信号,在风力发电系统的运行过程中,实时在线监测振动状况并发送检测信息,根据检测信息有效控制风机运转状态,避免由于共振而造成的结构失效,并对超出幅度阈值的振动进行安全预警。
将力传感器和加速度传感器安装固定于风机上,传感器输出端连接到专用数据采集模块的输入端,专用数据采集模块通过网络将数据上传到本地或远端服务器,进行下一步数据分析和可视化。
专用数据采集模块的形式可能是数据采集板卡、嵌入式数据采集系统等。对于自动化装备或机器人,如果某些关注的数据缺失,无法从其通用控制器直接获取,此时可通过加装传感器,配合专用数据采集模块的方式,完成更多维度的数据采集,这种做法很常见。
3. 智能产品和终端
第三类是智能产品和终端,强调远程无线接入和移动属性。例如通过运营商4G/5G蜂窝网络、Wi-Fi等室内短距离通信,或者低功耗广域网无线连接上报数据。通过无线方式可以采集智能产品和终端的各种指标数据,例如电量、信号强度、功耗、定位、嵌入式传感器数据等。
大部分智能产品和终端在产品定义时直接集成了无线通信能力,手机和可穿戴设备属于典型的例子。当前智能产品越来越丰富,万物互联时代,默认具备远程接入能力,对智能产品使用过程中的各种运行指标进行监测,分析采集的数据,可以指导研发团队更好地改进产品。
例如具有移动属性的自动化装备,如AGV机器人在室内基于Wi-Fi自组网集群,实现AGV之间的通信,草皮收割机在户外作业时的远程监测和控制。有些产品终端本身不具备远程接入能力,可间接通过数传模块(Data Transfer Unit,DTU)或工业网关,实现同样的效果。
工业数据采集关于数据的界定是非常广义的,它可能来自通用控制器运行时的关键指标,或者传感器采集的某个物理量,或者单纯一个身份标识信息,比如RFID标签EPC数据区定义的标签ID、广播报文中携带的唯一MAC地址等,通信双方彼此交换的可能仅仅是简单的身份信息,完成一次确认,无须多余信息,虽然通信双方有能力携带额外信息。
伺服驱动器 1769-IF16C 抗干扰能力强