输入模块 1756-OB8 可拆卸端子 一站式服务
1756-A10 1756-A13 1756-A17 1756-A4 1756-A7 1756-BA1 1756-BA2 1756-BATA | 1756-IF16 1756-IF16H 1756-IF8 1756-IF8H 1756-IF8I 1756-IF6I 1756-IF6CIS 1756-IT6I
| 1794-IM16 1794-IM8 1794-IR8 1794-IRT8 1794-IT8 1794-IV16 1794-IV32 1794-OA16
| 1756-HSC 1756-IA16 1756-IA16I 1756-IA32 1756-IB16 1756-IB16D 1756-IB16I 1756-IB32
|
1756-CN2 1756-CN2R 1756-CNB 1756-CNBR 1756-DHRIO 1756-DNB 1756-EN2T 1756-EN2TR 1756-EN3TR 1756-ENBT 1756-ENET 1756-EWEB | 1756-IR6I 1756-IR12 1756-IRT8I 1756-IT6I2 1756-IM16 1756-L61 1756-L62 1756-L63 1756-L64 1756-L65 1756-L71 1756-L71S
| 1756-M03SE 1756-M08SE 1756-M16SE 1756-N2 1756-OA16 1756-OA16I 1756-OB16D 1756-OB16E 1756-OB16I 1756-OB32 1756-OF4 1756-OF8
| 1756-BATA 1756-CNB 1756-IC16 1756-IB16 1756-IB32 1756-IF16 1756-IR61 1734-ACNR 1734-ADN 1734-AENT 1734-AENTR 1734-APB
|
1756-TBS6H 1756-TBSH 1757-SRM 1746-N2 1746-NI16I 1746-NI4
| 1756-PA75R 1756-PB72 1756-PB75 1756-RM 1756-IB16 1746-IV32
| 1756-OF8I 1756-OW16I 1756-PA72 1756-PA75 1794-OA8 1794-OA8I
| 1746-IA16 1746-IB16 1746-IB32 1746-IM16 1746-IO12DC 1746-ITB16 |
输入模块 1756-OB8 可拆卸端子 一站式服务
增材制造工艺作为近年来制造行业的顶流,一直备受各行业关注。除了率先大范围展开增材制造应用的航空行业,在汽车、电子乃至医疗行业也都有了不俗的进展。深谙增材制造工艺的学者都直言:使用3D打印简单,但应用好比较难。那是因为这其中确实包含多学科的知识、技术,需要逐一击破。要想打印好一个零件,需要多项关键技术的夹持,其中很重要的一点就是支撑结构。而支撑结构可研究的点又有很多,常见的就是支撑结构的类型,其次是支撑的疏密、支撑的材料、支撑的打印参数等。支撑结构的合适与否将会直接决定打印的成败,优良的支撑结构不仅可以协助零部件成功打印,也可以做到在无论是在支撑去除上还是成本控制上都非常友好。
在设计金属支撑结构时需要达到的要求有很多。一方面,它们需要抵消金属粉床熔融工艺中产生的应力,保证与零件的友好连接避免分离,达到充分固定住零件的作用;另一方面,它们需要传导打印过程中产生的热量,防止粉末过度熔融造成表面质量不佳,减少单层热量聚集和热应力的产生;此外也需要考虑其去除难易程度、耗费成本等问题。简而言之,要设计增材制造所需的优质支撑结构,需要在保证将零件固定到位并抵消应力的情况下,将合适的支撑结构置于适当的位置,然后考虑如何减少支撑数量、方便快捷地进行后处理。
常见的支撑设计类型有块支撑、体支撑、壳支撑、圆柱(棱柱)支撑、线支撑、点支撑、树状支撑、锥支撑、悬垂块支撑等等。
海克斯康Simufact Additive是的金属增材制造工艺仿真解决方案,除了具有强大的分析求解能力、预测和解决打印问题之外,其本身也可以创建多种支撑类型。且其创建支撑的方法非常灵活,如想要选择不同的支撑结构,只需在被选取选中相应结构类型即可。Simufact Additive支持的支撑创建方法包含Simufact法、CADS Additive法。Simufact支持创建六棱柱支撑,如图1所示(零件做透明处理)。通过对支撑半径、间距等参数的设置即可一键式快速完成全局支撑的创建,且设计者可灵活选择想要生成支撑的零件位置、临界面角度等。值得一提的是对于这一类型的支撑结构,Simufact本身也可进行自动的支撑优化,软件通过将模型的受载情况、模型结构模拟一遍之后,即可根据模型不同位置(不同结构面)、不同受载情况适当调整六棱柱支撑的半径大小、疏密程度等,优化后的支撑结构如图2所示。
图1 Simufact Additive创建的支撑结构
图2自动优化后的六棱柱支撑
CADS Additive支持创建的支撑类型非常丰富,如块支撑、悬垂块支撑、块线支撑、线支撑、轮廓支撑、树支撑、杆支撑和hcell支撑等,为支撑结构设计者提供充分的选择性。在Simufact Additive中采用CADS Additive法创建支撑结构支持对于同一模型同时创建多种支撑,如图3所示。图4-图11分别为大家展示了CADS Additive法可以创建的多种支撑结构示例。
图3在Simufact Additive中采用CADS Additive法创建支撑的界面
图4采用CADS Additive法创建的块支撑
图5采用CADS Additive法创建的悬垂块支撑(适宜弯曲悬挑位置)
图6采用CADS Additive法创建的块线支撑
图7采用CADS Additive法创建的线支撑
图8采用CADS Additive法创建的轮廓支撑
图9采用CADS Additive法创建的树支撑
图10采用CADS Additive法创建的杆支撑
图11采用CADS Additive法创建的HCell支撑
在Simufact Additive中通过采用CADS Additive法创建支撑不仅有多样的结构供用户进行选择,同时也支持多种参数进一步去设计支撑几何结构。比如通过控制是否存在交叉定义支撑与零件之间的相交深度,如图12所示;齿形控制模式可以自如定义接触位置是否通过齿形相连,如图13所示;穿孔的关闭与打开控制支撑结构本身是否存在穿孔设计,如图14所示等等。
图12交叉设计(设置交叉深度)
图13齿形模型控制(左侧齿形模式关闭、右侧齿形模式打开)
图14穿孔控制(左未穿、右穿)
输入模块 1756-OB8 可拆卸端子 一站式服务