ATA蓄电池LC-R127.2绿色通道
ATA蓄电池过桥连接结构,包括有极板组、正极柱、负极柱以及偏极柱,正极柱和负极柱分别设置在极板组的两侧,偏极柱位于正极柱和负极柱之间,偏极柱包括有左偏极柱和右偏极柱,在左偏极柱和右偏极柱之间预留有间隙,极板的一端延伸到左偏极柱和右偏极柱的间隙中;通过在偏极柱的中间预留有间隙供极板连接,以提高导电性能,同时节约了材料,降低了成本,并且过桥不易断裂,大大提供了蓄电池的使用寿命。
产品特性:
▲装配紧密,无需特定环境使用
▲安全性能优越,维护简单
▲长寿命、高容量、优越的抗过放电能力
▲无需加水,免需特定方向使用
▲内阻小,输出功率高
▲应各种温度条件(-15℃—50℃)
▲无游离电解液,防爆,自放电小
电池的内阻很小,我们一般用微欧或者毫欧的单位来定义它。在一般的测量场合,我们要求电池的内阻测量精度误差必须控制在正负5%以内。这么小的阻值和这么**的要求必须用专用仪器来进行测量。
电解液是电池四大关键材料(正极、负极、隔膜、电解液)之一,号称锂离子电池的“血液”,在电池中正负极之间起到传导电子的作用,是锂离子电池获得高电压、高比能等优点的保证。电解液一般由高纯度的有机溶剂、电解质锂盐(六氟磷酸锂,LiFL6)、必要的添加剂等原料,在一定条件下,按一定比例配制而成的。
电解液材料组成溶剂
碳酸丙烯酯 PC ﹝Propylene Carbonate﹞
碳酸乙烯酯 EC ﹝Ethylene Carbonate﹞
碳酸二甲酯 DEC ﹝Dimethyl Carbonate﹞
甲酯 Propiolic Acid
1,4 – 丁丙酯 GBL ﹝γ- Butyrolactone﹞
溶质
LiPF6 ﹝主要﹞
LiBF4
LiClO4
LiAsF6
LiCF3SO3
蓄电池充电过程的电化反应
充电时,应在外接一直流电源(充电极或整流器),使正、负极板在放电后生成的物质恢复成原来的活性物质,并把外界的电能转变为化学能储存起来。
在正极板上,在外界电流的作用下,硫酸铅被离解为二价铅离子(Pb2)和硫酸根负离子(SO4-2),由于外电源不断从正极吸取电子,则正极板附近游离的二价铅离子(Pb2)不断放出两个电子来补充,变成四价铅离子(Pb4),并与水继续反应,终在正极极板上生成二氧化铅(PbO2)。
在负极板上,在外界电流的作用下,硫酸铅被离解为二价铅离子(Pb2)和硫酸根负离子(SO4-2),由于负极不断从外电源获得电子,则负极板附近游离的二价铅离子(Pb2)被中和为铅(Pb),并以绒状铅附着在负极板上。
电解液中,正极不断产生游离的氢离子(H)和硫酸根离子(SO4-2),负极不断产生硫酸根离子(SO4-2),在电场的作用下,氢离子向负极移动,硫酸根离子向正极移动,形成电流。
充电后期,在外电流的作用下,溶液中还会发生水的电解反应。