处理器模块 1747-L524 低耗节能 耐用性强
1756-A10 1756-A13 1756-A17 1756-A4 1756-A7 1756-BA1 1756-BA2 1756-BATA | 1756-IF16 1756-IF16H 1756-IF8 1756-IF8H 1756-IF8I 1756-IF6I 1756-IF6CIS 1756-IT6I
| 1794-IM16 1794-IM8 1794-IR8 1794-IRT8 1794-IT8 1794-IV16 1794-IV32 1794-OA16
| 1756-HSC 1756-IA16 1756-IA16I 1756-IA32 1756-IB16 1756-IB16D 1756-IB16I 1756-IB32
|
1756-CN2 1756-CN2R 1756-CNB 1756-CNBR 1756-DHRIO 1756-DNB 1756-EN2T 1756-EN2TR 1756-EN3TR 1756-ENBT 1756-ENET 1756-EWEB | 1756-IR6I 1756-IR12 1756-IRT8I 1756-IT6I2 1756-IM16 1756-L61 1756-L62 1756-L63 1756-L64 1756-L65 1756-L71 1756-L71S
| 1756-M03SE 1756-M08SE 1756-M16SE 1756-N2 1756-OA16 1756-OA16I 1756-OB16D 1756-OB16E 1756-OB16I 1756-OB32 1756-OF4 1756-OF8
| 1756-BATA 1756-CNB 1756-IC16 1756-IB16 1756-IB32 1756-IF16 1756-IR61 1734-ACNR 1734-ADN 1734-AENT 1734-AENTR 1734-APB
|
1756-TBS6H 1756-TBSH 1757-SRM 1746-N2 1746-NI16I 1746-NI4
| 1756-PA75R 1756-PB72 1756-PB75 1756-RM 1756-IB16 1746-IV32
| 1756-OF8I 1756-OW16I 1756-PA72 1756-PA75 1794-OA8 1794-OA8I
| 1746-IA16 1746-IB16 1746-IB32 1746-IM16 1746-IO12DC 1746-ITB16 |
处理器模块 1747-L524 低耗节能 耐用性强
制造业作为国民经济的主体,是立国之本、强国之基。目前我国制造业正在由“量的积累”阶段迈向“质的提升”,在流程行业,许多工厂在自主创新、资源利用效率、信息化程度等都面临着转型升级的刚需,而智能化工厂是实现“智能制造”的必经之路。我们将聚焦流程行业的典型代表之一——玻璃行业,探索如何从“数字化”到“智能化”从而实现转型升级。
“高、难、多”痛点驱动,玻璃行业转型变革之困
玻璃行业主要面临三大痛点。一是玻璃企业是典型的“高”耗能生产企业,窑炉、退火炉、钢化炉等一系列的高耗能设备是能源消耗的大头,一方面企业面临政府严峻的能源指标监控压力,另一方面节能降耗省成本也是企业核心考虑的重点问题。二是工艺复杂“难”控,玻璃的生产工艺具有连续性,目前大多工厂的生产经营数据依赖人工采集和分析,使得工艺参数反馈滞后,且设备间的参数分析无关联。此外,老师傅经验难传承,生产不确定风险增加。有经验的老师傅离休退岗,大量未经数字化沉淀的经验难以传承,这些因素都使得生产管理的过程更加“难”控。三是存在“多”处重大危险源,工厂有氮站、氢站、液化气和管道天然气等多处重大危险源,一旦出现监控不及时等风险,人员安全事故就会发生从而对企业造成损失。
如何为玻璃行业的转型提供破局之道,我们认为从【数字化】到【智能化】是破解困局的高效密码。
【数字化之道】
数字化工厂底座为工厂“全面体检”,诊断并发现问题
在数字化时代的海洋中,如何发现、挖掘并运营数据,实现数据价值的大化,是工业企业面临的首要课题。数字化时代是以设备为核心用户、工业互联网为核心系统,从而构建新型的企业管理。
对于玻璃企业而言,很多工厂都建设了大量信息系统,例如ERP、MES和QMS等,但是怎么把这些信息化系统和工厂的生产主力军——“设备”进行整合,并让设备“开口说话”,从而发现生产经营中的问题。下面我们将用“体检——诊断——治疗”的故事让大家轻松理解工业互联网是如何为玻璃行业转型赋能。
首先整个数字化的“体检流程”可以分为四步:
步数据采集:在玻璃工厂的各个工段(热端、冷端、深加工和公辅),都存在大量的设备需要采集数据。以往工作人员需要深入车间开展巡检,人工记录设备数据,不仅工作量大、效率低,还存在漏检、误检的可能性。现在凭借工业互联网平台,可以解决各类设备的联网需求,化解设备数据采集的难题。
(玻璃工厂设备层概览)
第二步数据治理分析:采集完设备数据后,需要对数据进行处理分析并沉淀核心数据,存储到企业的数据仓沉淀为有价值的数据资产,为日后的经营分析提供基础。
第三步业务数据管理:将内外部的数据整合分析后,结合公司经营的五大核心模块(生产、品质、设备、能碳、安环)和行业标准进一步分析数据并进行诊断问题。
第四步分析决策:基于工厂经营的五大维度诊断出工厂的问题后,通过一些可视化的应用对关键指标进行数据和图表的呈现,即生成一个个具体的“画像报告”,让数据“会说话”且让负责人能看懂并进行下一步的分析决策。
经过数字化的“体检流程”后,负责人会看到一张全面的玻璃工厂“数字化体检报告”,报告覆盖生产、品质、设备、能碳、安环五大模块,针对每个模块的关键指标也会有详细的诊断结果,工厂的“病症”一目了然。
(某玻璃工厂数字化“体检报告单”示例)
【智能化之道】
“体检”过后,智能化场景应用针对症结“对症下药”
通过数字化的手段为企业完成“体检”并得到诊断结果之后,将转向智能化的场景应用来为工厂“对症下药”。这里我们主要针对【AI+工艺智能化】和【AI+能碳智能化】两个场景应用来说明为什么它们是玻璃行业甚至是流程制造行业转型升级的关键燃料。
处理器模块 1747-L524 低耗节能 耐用性强